Steven McIntosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9414200/publications.pdf

Version: 2024-02-01

172207 138251 3,473 64 29 58 citations h-index g-index papers 65 65 65 3290 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Au–Pd separation enhances bimetallic catalysis of alcohol oxidation. Nature, 2022, 603, 271-275.	13.7	114
2	Biomineralization of Nanocrystalline CdS/ZnS Photocatalysts via Controlled Surface Passivation for Enhanced Hydrogen Evolution. ACS Applied Nano Materials, 2022, 5, 2293-2304.	2.4	10
3	Sequential, low-temperature aqueous synthesis of Ag–In–S/Zn quantum dots <i>via</i> staged cation exchange under biomineralization conditions. Journal of Materials Chemistry B, 2022, 10, 4529-4545.	2.9	1
4	Insights into Proton Recombination in Ceramic Proton Conducting Electrodes. Journal of the Electrochemical Society, 2021, 168, 044522.	1.3	0
5	Investigating the Catalytic Requirements of Perovskite Fuel Electrodes Using Ultra-Low Metal Loadings. Journal of the Electrochemical Society, 2021, 168, 084502.	1.3	4
6	Tailored Coupling of Biomineralized CdS Quantum Dots to rGO to Realize Ambient Aqueous Synthesis of a High-Performance Hydrogen Evolution Photocatalyst. ACS Applied Materials & Samp; Interfaces, 2020, 12, 42773-42780.	4.0	15
7	Scalable Biomineralization of CdS Quantum Dots by Immobilized Cystathionine \hat{I}^3 -Lyase. ACS Sustainable Chemistry and Engineering, 2020, 8, 15189-15198.	3.2	6
8	"Intelligent―Pt Catalysts Studied on High-Surface-Area CaTiO ₃ Films. ACS Catalysis, 2019, 9, 7318-7327.	5.5	39
9	In Situ Biomineralization of Cu _{<i>y</i>} Sn _{<i>z</i>} S ₄ Nanocrystals within TiO ₂ -Based Quantum Dot Sensitized Solar Cell Anodes. ACS Applied Materials & Interfaces. 2019. 11. 45656-45664.	4.0	9
10	Surface modification of SOFC cathodes by Co, Ni, and Pd oxides. Solid State Ionics, 2019, 341, 115051.	1.3	22
11	Enzymatic synthesis of supported CdS quantum dot/reduced graphene oxide photocatalysts. Green Chemistry, 2019, 21, 4046-4054.	4.6	24
12	Oxygen vacancy localization and anisotropic oxygen anion transport in Sr1â^xYxCoO3â^Î (xâ€=â€0.1, 0.2) under solid oxide fuel cell cathode conditions. Solid State Ionics, 2018, 321, 34-42.	1.3	7
13	Ambient temperature aqueous synthesis of ultrasmall copper doped ceria nanocrystals for the water gas shift and carbon monoxide oxidation reactions. Journal of Materials Chemistry A, 2018, 6, 244-255.	5. 2	23
14	Low temperature aqueous synthesis of size-controlled nanocrystals through size focusing: a quantum dot biomineralization case study. Nanoscale, 2018, 10, 20785-20795.	2.8	12
15	Direct Single-Enzyme Biomineralization of Catalytically Active Ceria and Ceria–Zirconia Nanocrystals. ACS Nano, 2017, 11, 3337-3346.	7. 3	29
16	Single Enzyme Direct Biomineralization of CdSe and CdSe-CdS Core-Shell Quantum Dots. ACS Applied Materials & Dots. 13430-13439.	4.0	18
17	Single enzyme direct biomineralization of ZnS, Zn _x Cd _{1â^'x} S and Zn _x Cd _{1â^'x} Sâ€"ZnS quantum confined nanocrystals. RSC Advances, 2017, 7, 38490-38497.	1.7	12
18	Enzymatic biomineralization of biocompatible CulnS ₂ , (CulnZn)S ₂ and CulnS ₂ /ZnS core/shell nanocrystals for bioimaging. Nanoscale, 2017, 9, 9340-9351.	2.8	31

#	Article	IF	CITATIONS
19	Morphology and Composition of Biomineralized Ceria and Ceria-Zirconia Nanocrystals. Microscopy and Microanalysis, 2016, 22, 250-251.	0.2	1
20	Biomineralization of PbS and PbS–CdS core–shell nanocrystals and their application in quantum dot sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 6107-6115.	5.2	46
21	Cobalt Catalysts Decorated with Platinum Atoms Supported on Barium Zirconate Provide Enhanced Activity and Selectivity for CO ₂ Methanation. ACS Catalysis, 2016, 6, 2811-2818.	5.5	90
22	Single-enzyme biomineralization of cadmium sulfide nanocrystals with controlled optical properties. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5275-5280.	3.3	94
23	Structural analysis of PrBaMn2O5+l´ under SOFC anode conditions by in-situ neutron powder diffraction. Journal of Power Sources, 2016, 330, 240-245.	4.0	27
24	Biomineralized CdS Quantum Dot Nanocrystals: Optimizing Synthesis Conditions and Improving Functional Properties by Surface Modification. Industrial & Engineering Chemistry Research, 2016, 55, 11235-11244.	1.8	26
25	Structural and Optical Characterization of Biosynthesized CdS Quantum Dots. Microscopy and Microanalysis, 2015, 21, 1737-1738.	0.2	O
26	Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden–Popper phases?. Faraday Discussions, 2015, 182, 113-127.	1.6	14
27	Proton-Conducting Perovskites as Supports for Cr Catalysts in Short Contact Time Ethane Dehydrogenation. ACS Catalysis, 2015, 5, 95-103.	5.5	28
28	Biomanufacturing of CdS quantum dots. Green Chemistry, 2015, 17, 3775-3782.	4.6	74
29	Oxygen transport pathways in Ruddlesden–Popper structured oxides revealed via in situ neutron diffraction. Journal of Materials Chemistry A, 2015, 3, 21864-21874.	5.2	47
30	On the link between bulk and surface properties of mixed ion electron conducting materials $Ln < ub > 0.5 < sub > 0.5 < sub > 0.5 < sub > 0.5 < sub > 0.8 < sub > 0.2 < sub > 0.2 < sub > 0.3 a^2 f^2 < sub > (Ln = La, Pr, Nd). Journal of Materials Chemistry A, 2014, 2, 18838-18847.$	5.2	13
31	On the link between bulk structure and surface activity of double perovskite based SOFC cathodes. Solid State Ionics, 2014, 260, 55-59.	1.3	32
32	High temperature in situ neutron powder diffraction of oxides. Journal of Materials Chemistry A, 2014, 2, 6015-6026.	5.2	20
33	Oxygen Anion Transport in Solid Oxides. , 2014, , 1461-1475.		O
34	On the H2/D2 isotopic exchange rate of proton conducting barium cerates and zirconates. Journal of Materials Chemistry A, 2013, 1, 7639.	5.2	33
35	An in-situ neutron diffraction study of the crystal structure of PrBaCo2O5+Î' at high temperature and controlled oxygen partial pressure. Solid State Ionics, 2013, 249-250, 34-40.	1.3	49
36	Direct Hydrocarbon Solid Oxide Fuel Cells. , 2013, , 31-76.		65

#	Article	IF	Citations
37	Evidence for the low oxygen stoichiometry of cubic Ba0.5Sr0.5Co0.5Fe0.5O3-δ from in-situ neutron diffraction. Solid State Ionics, 2013, 253, 27-31.	1.3	23
38	Visualizing oxygen anion transport pathways in NdBaCo2O5+ \hat{l}' by in situ neutron diffraction. Journal of Materials Chemistry A, 2013, 1, 3091.	5.2	55
39	Electrical conductivity relaxation of polycrystalline PrBaCo2O5+Î' thin films. Solid State Ionics, 2012, 228, 14-18.	1.3	25
40	Direct Hydrocarbon Solid Oxide Fuel Cells. , 2012, , 633-664.		0
41	On the methane oxidation activity of Sr2(MgMo)2O6-δ: a potential anode material for direct hydrocarbon solid oxide fuel cells. Journal of Materials Chemistry, 2011, 21, 7443.	6.7	16
42	The Influence of Grain Size on La0.6Sr0.4Co0.2Fe0.8O3- \hat{l} Thin Film Electrode Impedance. Journal of the Electrochemical Society, 2011, 158, B1128.	1.3	18
43	Reverse micelle synthesis of perovskite oxide nanoparticles. Solid State Ionics, 2011, 196, 65-72.	1.3	23
44	On the reversibility of anode supported proton conducting solid oxide cells. Solid State Ionics, 2011, 203, 57-61.	1.3	49
45	Influence of lattice oxygen stoichiometry on the mechanism of methane oxidation in SOFC anodes. Solid State Ionics, 2011, 192, 453-457.	1.3	22
46	On the Choice of Anode Electrocatalyst for Alcohol Fuelled Proton Conducting Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2011, 158, B1532.	1.3	10
47	Unreliability of simultaneously determining kchem and Dchem via conductivity relaxation for surface-modified La0.6Sr0.4Co0.2Fe0.8O3â~Î. Solid State Ionics, 2010, 181, 1429-1436.	1.3	73
48	Properties and Performance of Anode-Supported Proton-Conducting BaCe[sub 0.48]Zr[sub 0.4]Yb[sub 0.1]Co[sub 0.02]O[sub 3-Î] Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2010, 157, B1397.	1.3	14
49	Insights Into the Fuel Oxidation Mechanism of La[sub 0.75]Sr[sub 0.25]Cr[sub 0.5]Mn[sub 0.5]O[sub 3â^Î] SOFC Anodes. Journal of the Electrochemical Society, 2010, 157, B392.	1.3	33
50	Pulse Reactor Studies to Assess the Potential of La $<$ sub $>0.75<$ sub $>Sr<$ sub $>0.25<$ sub $>Cr<$ sub $>0.5<$ sub $>Mr<$ sub $>0.4<$ sub $>X<$ sub $>0.1<$ sub $>O<$ sub $>3-Î<$ sub $>X<$ sub >0.1 sub $>O<$ sub $>3-Î<$ sub $>X$ sub $>O$ 0.1 $<$ sub $>O$ 100 And S	3.2	35
51	Evidence for Two Activation Mechanisms in LSM SOFC Cathodes. Journal of the Electrochemical Society, 2009, 156, B1369.	1.3	46
52	Transport properties and stability of cobalt doped proton conducting oxides. Solid State Ionics, 2009, 180, 160-167.	1.3	68
53	The rate and selectivity of methane oxidation over La0.75Sr0.25CrxMn1â^'xO3â^'Î^ as a function of lattice oxygen stoichiometry under solid oxide fuel cell anode conditions. Journal of Catalysis, 2008, 255, 313-323.	3.1	76
54	The Influence of Current Density on the Electrocatalytic Activity of Oxide-Based Direct Hydrocarbon SOFC Anodes. Journal of the Electrochemical Society, 2008, 155, B1202.	1.3	30

#	Article	IF	CITATIONS
55	Performance and Activation Behavior of Surface-Doped Thin-Film La[sub 0.8]Sr[sub 0.2]MnO[sub 3â^î] Cathodes. Journal of the Electrochemical Society, 2008, 155, B1.	1.3	32
56	Oxygen Stoichiometry and Chemical Expansion of Ba0.5Sr0.5Co0.8Fe0.2O3-Î'Measured by in Situ Neutron Diffraction. Chemistry of Materials, 2006, 18, 2187-2193.	3.2	312
57	Phase stability and oxygen non-stoichiometry of SrCo0.8Fe0.2O3â~δ measured by in situ neutron diffraction. Solid State Ionics, 2006, 177, 833-842.	1.3	89
58	Properties and performance of BaxSr1â^'xCo0.8Fe0.2O3â^'δ materials for oxygen transport membranes. Journal of Solid State Electrochemistry, 2006, 10, 581-588.	1.2	157
59	Effect of Polarization on and Implications for Characterization of LSM-YSZ Composite Cathodes. Electrochemical and Solid-State Letters, 2004, 7, A111.	2.2	103
60	An Examination of Carbonaceous Deposits in Direct-Utilization SOFC Anodes. Journal of the Electrochemical Society, 2004, 151, A604.	1.3	73
61	Direct Hydrocarbon Solid Oxide Fuel Cells. ChemInform, 2004, 35, no.	0.1	1
62	Direct Hydrocarbon Solid Oxide Fuel Cells. Chemical Reviews, 2004, 104, 4845-4866.	23.0	834
63	Effect of Precious-Metal Dopants on SOFC Anodes for Direct Utilization of Hydrocarbons. Electrochemical and Solid-State Letters, 2003, 6, A240.	2.2	109
64	An examination of lanthanide additives on the performance of Cu–YSZ cermet anodes. Electrochimica Acta, 2002, 47, 3815-3821.	2.6	110