Lucio Luzzatto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9414065/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Complement Inhibitor Eculizumab in Paroxysmal Nocturnal Hemoglobinuria. New England Journal of Medicine, 2006, 355, 1233-1243.	13.9	1,060
2	Natural History of Paroxysmal Nocturnal Hemoglobinuria. New England Journal of Medicine, 1995, 333, 1253-1258.	13.9	796
3	Diagnosis and management of paroxysmal nocturnal hemoglobinuria. Blood, 2005, 106, 3699-3709.	0.6	652
4	Somatic Mutations in Paroxysmal Nocturnal Hemoglobinuria: A Blessing in Disguise?. Cell, 1997, 88, 1-4.	13.5	295
5	Early Phagocytosis of Glucose-6-Phosphate Dehydrogenase (G6PD)-Deficient Erythrocytes Parasitized by Plasmodium falciparum May Explain Malaria Protection in G6PD Deficiency. Blood, 1998, 92, 2527-2534.	0.6	288
6	Complement fraction 3 binding on erythrocytes as additional mechanism of disease in paroxysmal nocturnal hemoglobinuria patients treated by eculizumab. Blood, 2009, 113, 4094-4100.	0.6	273
7	Glucose-6-Phosphate Dehydrogenase Deficiency. Hematology/Oncology Clinics of North America, 2016, 30, 373-393.	0.9	271
8	Isolation of human glucose-6-pbosphate debydrogenase (G6PD) cDNA clones: primary structure of the protein and unusual 5' non-coding region. Nucleic Acids Research, 1986, 14, 2511-2522.	6.5	242
9	G6 <scp>PD</scp> deficiency: a classic example of pharmacogenetics with onâ€going clinical implications. British Journal of Haematology, 2014, 164, 469-480.	1.2	185
10	7 Paroxysmal nocturnal haemoglobinuria. Best Practice and Research: Clinical Haematology, 1989, 2, 113-138.	1.1	183
11	Glucose-6-phosphate dehydrogenase deficiency. Blood, 2020, 136, 1225-1240.	0.6	182
12	Favism and Glucose-6-Phosphate Dehydrogenase Deficiency. New England Journal of Medicine, 2018, 378, 60-71.	13.9	181
13	GLUCOSE-6-PHOSPHATE DEHYDROGENASE AND MALARIA. Lancet, The, 1972, 299, 107-110.	6.3	145
14	Outrageous prices of orphan drugs: a call for collaboration. Lancet, The, 2018, 392, 791-794.	6.3	132
15	Maternally transmitted severe glucose 6-phosphate dehydrogenase deficiency is an embryonic lethal. EMBO Journal, 2002, 21, 4229-4239.	3.5	123
16	Abnormal T-cell repertoire is consistent with immune process underlying the pathogenesis of paroxysmal nocturnal hemoglobinuria. Blood, 2000, 96, 2613-2620.	0.6	115
17	Bone marrow transplants for paroxysmal nocturnal haemoglobinuria. British Journal of Haematology, 1999, 104, 392-396.	1.2	110
18	Rationale for recommending a lower dose of primaquine as a Plasmodium falciparum gametocytocide in populations where G6PD deficiency is common. Malaria Journal, 2012, 11, 418.	0.8	110

#	Article	IF	CITATIONS
19	Clinical spectrum and severity of hemolytic anemia in glucose 6-phosphate dehydrogenase–deficient children receiving dapsone. Blood, 2012, 120, 4123-4133.	0.6	104
20	Hemolytic Potential of Tafenoquine in Female Volunteers Heterozygous for Glucose-6-Phosphate Dehydrogenase (G6PD) Deficiency (G6PD Mahidol Variant) versus G6PD-Normal Volunteers. American Journal of Tropical Medicine and Hygiene, 2017, 97, 702-711.	0.6	91
21	Advances in understanding the pathogenesis of acquired aplastic anaemia. British Journal of Haematology, 2018, 182, 758-776.	1.2	91
22	Primaquine-induced haemolysis in females heterozygous for G6PD deficiency. Malaria Journal, 2018, 17, 101.	0.8	84
23	Germline NPM1 mutations lead to altered rRNA 2′-O-methylation and cause dyskeratosis congenita. Nature Genetics, 2019, 51, 1518-1529.	9.4	84
24	Variants of glucose-6-phosphate dehydrogenase are due to missense mutations spread throughout the coding region of the gene. Human Mutation, 1993, 2, 159-167.	1.1	83
25	Glycosylphosphatidylinositol-specific, CD1d-restricted T cells in paroxysmal nocturnal hemoglobinuria. Blood, 2013, 121, 2753-2761.	0.6	81
26	The Spectrum of Somatic Mutations in thePIG-AGene in Paroxysmal Nocturnal Hemoglobinuria Includes Large Deletions and Small Duplications. Blood Cells, Molecules, and Diseases, 1998, 24, 370-384.	0.6	79
27	Polymorphism of the complement receptor 1 gene correlates with the hematologic response to eculizumab in patients with paroxysmal nocturnal hemoglobinuria. Haematologica, 2014, 99, 262-266.	1.7	77
28	Management of Paroxysmal Nocturnal Haemoglobinuria: a personal view. British Journal of Haematology, 2011, 153, 709-720.	1.2	76
29	C6PD Mediterranean accounts for the high prevalence of G6PD deficiency in Kurdish Jews. Human Genetics, 1993, 91, 293-4.	1.8	69
30	Hematologically Important Mutations: Glucose-6-Phosphate Dehydrogenase. Blood Cells, Molecules, and Diseases, 1997, 23, 302-313.	0.6	67
31	Dyskeratosis and ribosomal rebellion. Nature Genetics, 1998, 19, 6-7.	9.4	65
32	Two new cell lines from B-prolymphocytic leukaemia: Characterization by morphology, immunological markers, karyotype and Ig gene rearrangement. International Journal of Cancer, 1986, 38, 531-538.	2.3	64
33	Mutations in the PIG-A gene causing partial deficiency of GPI-linked surface proteins (PNH II) in patients with paroxysmal nocturnal haemoglobinuria. British Journal of Haematology, 1994, 87, 863-866.	1.2	63
34	Human mutations in glucose 6â€phosphate dehydrogenase reflect evolutionary history. FASEB Journal, 2000, 14, 485-494.	0.2	63
35	The rise and fall of the antimalarial Lapdap: a lesson in pharmacogenetics. Lancet, The, 2010, 376, 739-741.	6.3	60
36	Both mutations in G6PD A — are necessary to produce the G6PD deficient phenotype. Human Molecular Genetics, 1992, 1, 171-174.	1.4	55

3

#	Article	IF	CITATIONS
37	Highly homologous T-cell receptor beta sequences support a common target for autoreactive T cells in most patients with paroxysmal nocturnal hemoglobinuria. Blood, 2007, 109, 5036-5042.	0.6	54
38	The use of PIC-A as a sentinel gene for the study of the somatic mutation rate and of mutagenic agents in vivo. Mutation Research - Reviews in Mutation Research, 2010, 705, 3-10.	2.4	54
39	Two distinct patterns of glycosylphosphatidylinositol (GPI) linked protein deficiency in the red cells of patients with paroxysmal nocturnal haemoglobinuria. British Journal of Haematology, 1992, 80, 399-405.	1.2	50
40	Red cell glucose-6-phosphate dehydrogenase status and pyruvate kinase activity in a Nigerian population. Tropical Medicine and International Health, 2000, 5, 119-123.	1.0	50
41	High incidence of thrombosis in African-American and Latin-American patients with Paroxysmal Nocturnal Haemoglobinuria. Thrombosis and Haemostasis, 2005, 93, 88-91.	1.8	50
42	Association of clonal T-cell large granular lymphocyte disease and paroxysmal nocturnal haemoglobinuria (PNH): further evidence for a pathogenetic link between T cells, aplastic anaemia and PNH. British Journal of Haematology, 2001, 115, 1010-1014.	1.2	49
43	Cloning of the glucose 6-phosphate dehydrogenase gene from Plasmodium f alciparum. Molecular and Biochemical Parasitology, 1994, 64, 313-326.	0.5	48
44	New Somatic Mutation in the PIC-A Gene Emerges at Relapse of Paroxysmal Nocturnal Hemoglobinuria. Blood, 1998, 92, 3422-3427.	0.6	46
45	Neutral evolution in paroxysmal nocturnal hemoglobinuria. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18496-18500.	3.3	46
46	CD157 plays a pivotal role in neutrophil transendothelial migration. Blood, 2006, 108, 4214-4222.	0.6	45
47	Causality and Chance in the Development of Cancer. New England Journal of Medicine, 2015, 373, 84-88.	13.9	44
48	MALARIA: Protecting Against Bad Air. Science, 2001, 293, 442-443.	6.0	44
49	Cytogenetic and morphological abnormalities in paroxysmal nocturnal haemoglobinuria. British Journal of Haematology, 2001, 115, 360-368.	1.2	42
50	Recent advances in the pathogenesis and treatment of paroxysmal nocturnal hemoglobinuria. F1000Research, 2016, 5, 209.	0.8	38
51	Solution of the structure of tetrameric human glucose 6-phosphate dehydrogenase by molecular replacement. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 826-834.	2.5	37
52	The Frequency of Granulocytes with Spontaneous Somatic Mutations: A Wide Distribution in a Normal Human Population. PLoS ONE, 2013, 8, e54046.	1.1	36
53	Clinical and haematological consequences of recurrent G6PD mutations and a single new mutation causing chronic nonspherocytic haemolytic anaemia. British Journal of Haematology, 1998, 101, 670-675.	1.2	34
54	G6PD is indispensable for erythropoiesis after the embryonic-adult hemoglobin switch. Blood, 2004, 104, 3148-3152.	0.6	33

#	Article	IF	CITATIONS
55	Glycosylphosphatidylinositol-specific T cells, IFN-γ-producing T cells, and pathogenesis of idiopathic aplastic anemia. Blood, 2017, 129, 388-392.	0.6	32
56	Deficiency in red blood cells. Nature, 1991, 350, 115-115.	13.7	31
57	A ten year review of the sickle cell program in Muhimbili National Hospital, Tanzania. BMC Hematology, 2018, 18, 33.	2.6	31
58	Expression and characterization of glucose-6-phosphate dehydrogenase of Plasmodium falciparum. Molecular and Biochemical Parasitology, 1990, 41, 83-91.	0.5	30
59	Promoter Function of the Human Glucose-6-Phosphate Dehydrogenase Gene Depends on Two GC Boxes that are Cell Specifically Controlled. FEBS Journal, 1994, 226, 377-384.	0.2	30
60	G6PD deficiency: a polymorphism balanced by heterozygote advantage against malaria. Lancet Haematology,the, 2015, 2, e400-e401.	2.2	28
61	SickleInAfrica. Lancet Haematology,the, 2020, 7, e98-e99.	2.2	28
62	Breakthrough Hemolysis in PNH with Proximal or Terminal Complement Inhibition. New England Journal of Medicine, 2022, 387, 160-166.	13.9	28
63	Human glucose-6-phosphate dehydrogenase Lysine 205 is dispensable for substrate binding but essential for catalysis. FEBS Letters, 1995, 366, 61-64.	1.3	27
64	Stable in vivo expression of glucose-6-phosphate dehydrogenase (G6PD) and rescue of G6PD deficiency in stem cells by gene transfer. Blood, 2000, 96, 4111-4117.	0.6	25
65	Transcriptional and epigenetic basis for restoration of G6PD enzymatic activity in human G6PD-deficient cells. Blood, 2014, 124, 134-141.	0.6	24
66	Severe telomere shortening in patients with paroxysmal nocturnal hemoglobinuria affects both GPI– and GPI+ hematopoiesis. Blood, 2003, 102, 514-516.	0.6	23
67	Hypertensive disorders of pregnancy are associated with an inflammatory state: evidence from hematological findings and cytokine levels. BMC Pregnancy and Childbirth, 2019, 19, 237.	0.9	22
68	Making hydroxyurea affordable for sickle cell disease in Tanzania is essential (<scp>HASTE</scp>): How to meet major health needs at a reasonable cost. American Journal of Hematology, 2021, 96, E2-E5.	2.0	22
69	The production of normal and variant human glucose-6-phosphate dehydrogenase in cos cells. FEBS Journal, 1988, 178, 109-113.	0.2	20
70	When are parasites clonal?. Nature, 1990, 348, 120-120.	13.7	20
71	Haemoglobin's chaperone. Nature, 2002, 417, 703-705.	13.7	20
72	Vχ gene segments rearranged in chronic lymphocytic leukemia are distributed over a large portion of the Vχ locus and do not show somatic mutation. European Journal of Immunology, 1993, 23, 391-397.	1.6	18

#	Article	IF	CITATIONS
73	Independent origin of single and double mutations in the human glucose 6-phosphate dehydrogenase gene. , 1996, 8, 311-318.		18
74	Favism, the commonest form of severe hemolytic anemia in Palestinian children, varies in severity with three different variants of G6PD deficiency within the same community. Blood Cells, Molecules, and Diseases, 2016, 60, 58-64.	0.6	18
75	Hydroxyurea — An Essential Medicine for Sickle Cell Disease in Africa. New England Journal of Medicine, 2019, 380, 187-189.	13.9	17
76	Human red cell glucose-6-phosphate dehydrogenase is encoded only on the X chromosome. Cell, 1990, 62, 9-10.	13.5	16
77	Paroxysmal Murine Hemoglobinuria(?): A Model for Human PNH. Blood, 1999, 94, 2941-2944.	0.6	16
78	Glycosylphosphatidylinositol-linked proteins are required for maintenance of a normal peripheral lymphoid compartment but not for lymphocyte development. European Journal of Immunology, 2002, 32, 2607-2616.	1.6	16
79	The "escape―model: a versatile mechanism for clonal expansion. British Journal of Haematology, 2019, 184, 465-466.	1.2	15
80	HAEMOGLOBINURIA AND HAPTOGLOBIN IN G6PD DEFICIENCY. British Journal of Haematology, 1995, 91, 511-512.	1.2	14
81	Treating Rare Diseases in Africa: The Drugs Exist but the Need Is Unmet. Frontiers in Pharmacology, 2021, 12, 770640.	1.6	14
82	In vivo gene marking of rhesus macaque long-term repopulating hematopoietic cells using a VSV-G pseudotyped versus amphotropic oncoretroviral vector. Journal of Gene Medicine, 2004, 6, 367-373.	1.4	13
83	Molecular response to imatinib in patients with chronic myeloid leukemia in Tanzania. Blood Advances, 2021, 5, 1403-1411.	2.5	13
84	X-chromosome inactivation: Switching off blocks of genes. Nature, 1983, 301, 375-376.	13.7	11
85	Synthesis of the essential core of the human glycosylphosphatidylinositol (GPI) anchor. Bioorganic Chemistry, 2011, 39, 88-93.	2.0	11
86	Tafenoquine for the prophylaxis, treatment and elimination of malaria: eagerness must meet prudence. Future Microbiology, 2019, 14, 1261-1279.	1.0	11
87	Favism and Glucose-6-Phosphate Dehydrogenase Deficiency. New England Journal of Medicine, 2018, 378, 1067-1069.	13.9	10
88	F cell numbers are associated with an Xâ€linked genetic polymorphism and correlate with haematological parameters in patients with sickle cell disease. British Journal of Haematology, 2020, 191, 888-896.	1.2	10
89	Lymphomatoid Granulomatosis - Evidence of a Clonal T-Cell Origin and an Association with Lethal Midline Granuloma. QJM - Monthly Journal of the Association of Physicians, 1988, , .	0.2	9
90	High frequency of acquired aplastic anemia in Tanzania. American Journal of Hematology, 2019, 94, E86-E88.	2.0	9

#	Article	IF	CITATIONS
91	Sickle cell disease and malaria: decreased exposure and asplenia can modulate the risk from Plasmodium falciparum. Malaria Journal, 2020, 19, 165.	0.8	9
92	PNH phenotypes and their genesis. British Journal of Haematology, 2020, 189, 802-805.	1.2	7
93	One enzyme from two genes?. Nature, 1989, 341, 286-287.	13.7	6
94	Management of pregnancy when maternal blood has a very high level of fetal haemoglobin. British Journal of Haematology, 1994, 88, 432-434.	1.2	6
95	Clonal rearrangement of the Tâ€cell receptor γ gene associated with a bizarre lymphoproliferative syndrome. European Journal of Haematology, 1988, 41, 289-294.	1.1	6
96	Paroxysmal nocturnal haemoglobinuria (PNH): novel therapies for an ancient disease. British Journal of Haematology, 2020, 191, 579-586.	1.2	6
97	Dynamics of G6PD activity in patients receiving weekly primaquine for therapy of Plasmodium vivax malaria. PLoS Neglected Tropical Diseases, 2021, 15, e0009690.	1.3	5
98	Control of hemolysis in patients with PNH. Blood, 2021, 138, 1908-1910.	0.6	5
99	Limited Exchange Transfusion Can Be Very Beneficial in Sickle Cell Anemia with Acute Chest Syndrome: A Case Report from Tanzania. Case Reports in Hematology, 2018, 2018, 1-3.	0.3	4
100	The prevalence of human immunodeficiency and of hepatitis B viral infections is not increased in patients with sickle cell disease in Tanzania. BMC Infectious Diseases, 2021, 21, 1028.	1.3	4
101	New Somatic Mutation in the PIG-A Gene Emerges at Relapse of Paroxysmal Nocturnal Hemoglobinuria. Blood, 1998, 92, 3422-3427.	0.6	4
102	Diagnosis and clinical management of enzymopathies. Hematology American Society of Hematology Education Program, 2021, 2021, 341-352.	0.9	4
103	Genes expressed in red cells could shape a malaria attack. Lancet Haematology,the, 2018, 5, e322-e323.	2.2	3
104	Sterile "Abscess" of the Spleen and the Sickle Cell Trait. Mediterranean Journal of Hematology and Infectious Diseases, 2017, 10, 2018003.	0.5	2
105	Paroxysmal nocturnal haemoglobinuria. , 2010, , 4298-4302.		2
106	What future for tropical disease research?. BioEssays, 1985, 3, 243-244.	1.2	1
107	Paroxysmal Nocturnal Haemoglobinuria. , 0, , 169-175.		1
108	Stable in vivo expression of glucose-6-phosphate dehydrogenase (G6PD) and rescue of G6PD deficiency in stem cells by gene transfer. Blood, 2000, 96, 4111-4117.	0.6	1

#	Article	IF	CITATIONS
109	Mild clinical expression of S- b thalassemia in a Brazilian patient with the b + IVS-I-6 (T ® C) mutation. Genetics and Molecular Biology, 1998, 21, 431-433.	0.6	1
110	Thalassaemia. Nature, 1983, 301, 460-460.	13.7	0
111	Thalassaemia. Nature, 1983, 301, 652-652.	13.7	0
112	Italian slur rebutted. Nature, 1984, 312, 302-302.	13.7	0
113	Rearrangement of T-cell Receptor (Delta, Gamma and Beta) Genes and its Significance in T-cell Chronic Leukaemias. Leukemia and Lymphoma, 1991, 4, 17-25.	0.6	0
114	East and West. Nature, 1991, 353, 460-460.	13.7	0
115	The Molecular Basis of Anemia. , 0, , 140-164.		0
116	Complement-mediated oxidative damage of red cells impairs response to eculizumab in a G6PD-deficient patient with PNH. Blood, 2020, 136, 3082-3085.	0.6	0
117	Paroxysmal Murine Hemoglobinuria(?): A Model for Human PNH. Blood, 1999, 94, 2941-2944.	0.6	0
118	Clonal Origin and Clonal Selection in PNH. , 2017, , 197-213.		0
119	Severe congenital neutropenia with elastase, neutrophil expressed (ELANE) gene mutation in a Tanzanian child. British Journal of Haematology, 2021, , .	1.2	ο