Heather G JÃ, rgensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9413840/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A KDM4A-PAF1-mediated epigenomic network is essential for acute myeloid leukemia cell self-renewal and survival. Cell Death and Disease, 2021, 12, 573.	6.3	20
2	Transcriptional Regulation by the NFAT Family in Acute Myeloid Leukaemia. Hemato, 2021, 2, 556-571.	0.6	4
3	Synergistic cytotoxicity of dual PI3K/mTOR and FLT3 inhibition in FLT3-ITD AML cells. Advances in Biological Regulation, 2021, 82, 100830.	2.3	8
4	<i>NFATC2</i> regulates Targets of MYC Signaling in MLL-AF9 AML. Blood, 2021, 138, 3301-3301.	1.4	0
5	Uncoupling p53 from an Embryonic Regulome Exhausts Quiescent CML Stem Cells through Inhibition of a HIF1alpha Molecular Program. Blood, 2021, 138, 1541-1541.	1.4	Ο
6	Targeting PI3K/Akt/mTOR in AML: Rationale and Clinical Evidence. Journal of Clinical Medicine, 2020, 9, 2934.	2.4	57
7	The Emerging Role of H3K9me3 as a Potential Therapeutic Target in Acute Myeloid Leukemia. Frontiers in Oncology, 2019, 9, 705.	2.8	53
8	An investigation of targeted inhibition of transcription factor activity with pyrrole imidazole polyamide (PA) in chronic myeloid leukemia (CML) blast crisis cells. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2622-2625.	2.2	5
9	Efficient Elimination of Acute Myeloid Leukemia Cells through Inhibition of KDM4A in Combination with PARP Inhibition. Blood, 2019, 134, 3756-3756.	1.4	Ο
10	Investigation of a minor groove-binding polyamide targeted to E2F1 transcription factor in chronic myeloid leukaemia (CML) cells. Blood Cells, Molecules, and Diseases, 2018, 69, 119-122.	1.4	5
11	Chronic myeloid leukaemia cells require the bone morphogenic protein pathway for cell cycle progression and self-renewal. Cell Death and Disease, 2018, 9, 927.	6.3	12
12	Nanoâ€curcumin safely prevents streptozotocinâ€induced inflammation and apoptosis in pancreatic beta cells for effective management of Type 1 diabetes mellitus. British Journal of Pharmacology, 2017, 174, 2074-2084.	5.4	77
13	CML cells actively evade host immune surveillance through cytokine-mediated downregulation of MHC-II expression. Blood, 2017, 129, 199-208.	1.4	58
14	Axl Blockade by BGB324 Inhibits BCR-ABL Tyrosine Kinase Inhibitor–Sensitive and -Resistant Chronic Myeloid Leukemia. Clinical Cancer Research, 2017, 23, 2289-2300.	7.0	38
15	Inhibition of interleukin-1 signaling enhances elimination of tyrosine kinase inhibitor–treated CML stem cells. Blood, 2016, 128, 2671-2682.	1.4	89
16	Cooperation of imipramine blue and tyrosine kinase blockade demonstrates activity against chronic myeloid leukemia. Oncotarget, 2016, 7, 51651-51664.	1.8	12
17	BGB324 Inhibits BCR-ABL TKI-Resistant Chronic Myeloid Leukemia. Blood, 2015, 126, 1569-1569.	1.4	0
18	JAK2/STAT5 inhibition by nilotinib with ruxolitinib contributes to the elimination of CML CD34+ cells in vitro and in vivo. Blood, 2014, 124, 1492-1501.	1.4	134

Heather G JÃ,rgensen

#	Article	IF	CITATIONS
19	Effects of the novel aurora kinase/JAK inhibitor, AT9283 and imatinib on Philadelphia positive cells in vitro. Blood Cells, Molecules, and Diseases, 2012, 48, 199-201.	1.4	5
20	Investigation into omacetaxine solution stability for <i>in vitro</i> study. Biomedical Chromatography, 2012, 26, 545-547.	1.7	2
21	<scp>BCR</scp> â€ <scp>ABL</scp> 1 tyrosine kinase sustained <scp><i>MECOM</i></scp> expression in chronic myeloid leukaemia. British Journal of Haematology, 2012, 157, 446-456.	2.5	9
22	Analysis of imatinib in bone marrow and plasma samples of chronic myeloid leukaemia patients using solid phase extraction LC-ESI-MS. Pakistan Journal of Pharmaceutical Sciences, 2011, 24, 285-91.	0.2	2
23	Uptake of synthetic Low Density Lipoprotein by leukemic stem cells — a potential stem cell targeted drug delivery strategy. Journal of Controlled Release, 2010, 148, 380-387.	9.9	30
24	Combined BCR-ABL inhibition with lentiviral-delivered shRNA and dasatinib augments induction of apoptosis in Philadelphia-positive cells. Experimental Hematology, 2009, 37, 206-214.	0.4	2
25	Inhibition of MDR1 does not sensitize primitive chronic myeloid leukemia CD34+ cells to imatinib. Experimental Hematology, 2009, 37, 692-700.	0.4	31
26	Nilotinib exerts equipotent antiproliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells. Blood, 2007, 109, 4016-4019.	1.4	283
27	Intermittent Exposure of Primitive Quiescent Chronic Myeloid Leukemia Cells to Granulocyte-Colony Stimulating Factor <i>In vitro</i> Promotes their Elimination by Imatinib Mesylate. Clinical Cancer Research, 2006, 12, 626-633.	7.0	86
28	Enhanced CML stem cell elimination in vitro by bryostatin priming with imatinib mesylate. Experimental Hematology, 2005, 33, 1140-1146.	0.4	18
29	Granulocyte-colony-stimulating factor (Filgrastim) may overcome imatinib-induced neutropenia in patients with chronic-phase myelogenous leukemia. Cancer, 2005, 103, 210-210.	4.1	15
30	Neutralisation of TGFβ or binding of VLA-4 to fibronectin prevents rat tendon adhesion following transection. Cytokine, 2005, 30, 195-202.	3.2	40
31	α1-Acid glycoprotein expressed in the plasma of chronic myeloid leukemia patients does not mediate significant in vitro resistance to STI571. Blood, 2002, 99, 713-715.	1.4	79
32	Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood, 2002, 99, 319-325.	1.4	1,107
33	A comparison of normal and leukemic stem cell biology in Chronic Myeloid Leukemia. Hematological Oncology, 2001, 19, 89-106.	1.7	16
34	Modulation of sialyl Lewis X dependent binding to E-Selectin by glycoforms of alpha-1-acid glycoprotein expressed in rheumatoid arthritis. , 1998, 12, 343-349.		30