Wenfei Xiong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9413823/publications.pdf Version: 2024-02-01

WENEEL XIONC

#	Article	IF	CITATIONS
1	Synergistic growth-inhibition effect of quercetin and N-Acetyl-L-cysteine against HepG2 cells relying on the improvement of quercetin stability. Food Chemistry, 2022, 374, 131729.	8.2	1
2	Antioxidant mechanism of a newly found phenolic compound from adlay (NDPS) in HepG2 cells via Nrf2 signalling. Food Chemistry, 2022, 378, 132034.	8.2	7
3	Relationship between gel properties and water holding of ovalbumin-carboxymethylcellulose electrostatic complex hydrogels. International Journal of Biological Macromolecules, 2021, 167, 1230-1240.	7.5	13
4	Thermodynamic parameters of gelatin-pectin complex coacervation. Food Hydrocolloids, 2021, 120, 106958.	10.7	23
5	Ovalbumin-carboxymethylcellulose complex coacervates stabilized high internal phase emulsions: Comparison of the effects of pH and polysaccharide charge density. Food Hydrocolloids, 2020, 98, 105282.	10.7	82
6	Insight into protein-starch ratio on the gelatinization and retrogradation characteristics of reconstituted rice flour. International Journal of Biological Macromolecules, 2020, 146, 524-529.	7.5	70
7	Enhancing the solubility and foam ability of rice glutelin by heat treatment at pH12: Insight into protein structure. Food Hydrocolloids, 2020, 103, 105626.	10.7	72
8	Insight into the effect of gluten-starch ratio on the properties of Chinese steamed bread (Mantou). International Journal of Biological Macromolecules, 2020, 163, 1821-1827.	7.5	35
9	Synthesis, Purification, and Characterization of a Structured Lipid Based on Soybean Oil and Coconut Oil and Its Applications in Curcuminâ€Loaded Nanoemulsions. European Journal of Lipid Science and Technology, 2020, 122, 2000086.	1.5	5
10	Characterization and analysis of an oilâ€inâ€water emulsion stabilized by rapeseed protein isolate under <scp>pH</scp> and ionic stress. Journal of the Science of Food and Agriculture, 2020, 100, 4734-4744.	3.5	15
11	Physicochemical properties and interfacial dilatational rheological behavior at air-water interface of high intensity ultrasound modified ovalbumin: Effect of ionic strength. Food Hydrocolloids, 2019, 97, 105210.	10.7	34
12	Binding interaction between β-conglycinin/glycinin and cyanidin-3-O-glucoside in acidic media assessed by multi-spectroscopic and thermodynamic techniques. International Journal of Biological Macromolecules, 2019, 137, 366-373.	7.5	35
13	Thermally induced gelation behavior and fractal analysis of ovalbumin-carboxymethylcellulose electrostatic complexes. Food Hydrocolloids, 2019, 91, 214-223.	10.7	26
14	Comparison of binding interactions of cyanidin-3-O-glucoside to β-conglycinin and glycinin using multi-spectroscopic and thermodynamic methods. Food Hydrocolloids, 2019, 92, 155-162.	10.7	96
15	Characteristic of interaction mechanism between β-lactoglobulin and nobiletin: A multi-spectroscopic, thermodynamics methods and docking study. Food Research International, 2019, 120, 255-263.	6.2	40
16	Emulsion stability and dilatational viscoelasticity of ovalbumin/chitosan complexes at the oil-in-water interface. Food Chemistry, 2018, 252, 181-188.	8.2	129
17	Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Research International, 2018, 109, 260-267.	6.2	249
18	Characterization and interfacial rheological properties of nanoparticles prepared by heat treatment of ovalbumin-carboxymethylcellulose complexes. Food Hydrocolloids, 2018, 82, 355-362.	10.7	57

WENFEI XIONG

#	Article	IF	CITATIONS
19	Enhancing the photostability and bioaccessibility of resveratrol using ovalbumin–carboxymethylcellulose nanocomplexes and nanoparticles. Food and Function, 2018, 9, 3788-3797.	4.6	57
20	Effects of thermal sterilization on soy protein isolate/polyphenol complexes: Aspects of structure, in vitro digestibility and antioxidant activity. Food Research International, 2018, 112, 284-290.	6.2	110
21	Adsorption and Distribution of Edible Gliadin Nanoparticles at the Air/Water Interface. Journal of Agricultural and Food Chemistry, 2017, 65, 2454-2460.	5.2	62
22	Complex coacervation of ovalbumin-carboxymethylcellulose assessed by isothermal titration calorimeter and rheology: Effect of ionic strength and charge density of polysaccharide. Food Hydrocolloids, 2017, 73, 41-50.	10.7	101
23	Effect of substitution degree on carboxymethylcellulose interaction with lysozyme. Food Hydrocolloids, 2017, 62, 222-229.	10.7	78
24	pH-Degradable antioxidant nanoparticles based on hydrogen-bonded tannic acid assembly. RSC Advances, 2016, 6, 31374-31385.	3.6	43
25	Nanogels fabricated from bovine serum albumin and chitosan via self-assembly for delivery of anticancer drug. Colloids and Surfaces B: Biointerfaces, 2016, 146, 107-113.	5.0	55
26	Ovalbumin-chitosan complex coacervation: Phase behavior, thermodynamic and rheological properties. Food Hydrocolloids, 2016, 61, 895-902.	10.7	92
27	High intensity ultrasound modified ovalbumin: Structure, interface and gelation properties. Ultrasonics Sonochemistry, 2016, 31, 302-309.	8.2	193
28	Curcumin encapsulated in the complex of lysozyme/carboxymethylcellulose and implications for the antioxidant activity of curcumin. Food Research International, 2015, 75, 98-105.	6.2	57
29	New photocatalyst based on graphene oxide/chitin for degradation of dyes under sunlight. International Journal of Biological Macromolecules, 2015, 81, 477-482.	7.5	31