
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9413523/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Eight glacial cycles from an Antarctic ice core. Nature, 2004, 429, 623-628.	27.8	2,015
2	A Reconciled Estimate of Ice-Sheet Mass Balance. Science, 2012, 338, 1183-1189.	12.6	1,246
3	One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 2006, 444, 195-198.	27.8	1,111
4	Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 2012, 484, 502-505.	27.8	1,051
5	A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science, 2013, 340, 852-857.	12.6	1,044
6	Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	870
7	Recent Antarctic ice mass loss from radarÂinterferometry and regional climateÂmodelling. Nature Geoscience, 2008, 1, 106-110.	12.9	819
8	Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 2018, 558, 219-222.	27.8	759
9	Partitioning Recent Greenland Mass Loss. Science, 2009, 326, 984-986.	12.6	755
10	The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty. Journal of Advances in Modeling Earth Systems, 2019, 11, 4245-4287.	3.8	692
11	Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1095-1103.	7.1	662
12	BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation. Geophysical Research Letters, 2017, 44, 11051-11061.	4.0	536
13	Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 2013, 502, 89-92.	27.8	503
14	An improved mass budget for the Greenland ice sheet. Geophysical Research Letters, 2014, 41, 866-872.	4.0	500
15	Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9239-9244.	7.1	452
16	Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nature Geoscience, 2020, 13, 132-137.	12.9	431
17	Higher surface mass balance of the Greenland ice sheet revealed by highâ€resolution climate modeling. Geophysical Research Letters, 2009, 36, .	4.0	430
18	Revisiting the Earth's sea-level and energy budgets from 1961 to 2008. Geophysical Research Letters, 2011. 38. n/a-n/a.	4.0	415

#	Article	IF	CITATIONS
19	On the recent contribution of the Greenland ice sheet to sea level change. Cryosphere, 2016, 10, 1933-1946.	3.9	358
20	A Review of Antarctic Surface Snow Isotopic Composition: Observations, Atmospheric Circulation, and Isotopic Modeling*. Journal of Climate, 2008, 21, 3359-3387.	3.2	344
21	Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere, 2013, 7, 469-489.	3.9	325
22	A new, highâ€resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophysical Research Letters, 2012, 39, .	4.0	315
23	Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere, 2018, 12, 521-547.	3.9	283
24	Large and Rapid Melt-Induced Velocity Changes in the Ablation Zone of the Greenland Ice Sheet. Science, 2008, 321, 111-113.	12.6	277
25	Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE timeâ€variable gravity data. Geophysical Research Letters, 2014, 41, 8130-8137.	4.0	268
26	Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – PartÂ2: Antarctica (1979–2016). Cryosphere, 2018, 12, 1479-1498.	3.9	268
27	Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophysical Research Letters, 2012, 39, .	4.0	261
28	An improved semi-empirical model for the densification of Antarctic firn. Cryosphere, 2011, 5, 809-819.	3.9	256
29	Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. Journal of Geophysical Research, 2006, 111, .	3.3	236
30	Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nature Climate Change, 2014, 4, 292-299.	18.8	225
31	Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models. Cryosphere, 2011, 5, 359-375.	3.9	217
32	Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900. Nature, 2015, 528, 396-400.	27.8	210
33	Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. Journal of Glaciology, 2014, 60, 761-770.	2.2	208
34	The role of albedo and accumulation in the 2010 melting record in Greenland. Environmental Research Letters, 2011, 6, 014005.	5.2	207
35	Projected land ice contributions to twenty-first-century sea level rise. Nature, 2021, 593, 74-82.	27.8	200

Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morteratsch,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

#	Article	IF	CITATIONS
37	Twentieth-Century Global-Mean Sea Level Rise: Is the Whole Greater than the Sum of the Parts?. Journal of Climate, 2013, 26, 4476-4499.	3.2	197
38	Extensive liquid meltwater storage in firn within the Greenland ice sheet. Nature Geoscience, 2014, 7, 95-98.	12.9	196
39	Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – PartÂ1: Greenland (1958–2016). Cryosphere, 2018, 12, 811-831.	3.9	194
40	Distinct patterns of seasonal Greenland glacier velocity. Geophysical Research Letters, 2014, 41, 7209-7216.	4.0	190
41	Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	186
42	Timing and origin of recent regional ice-mass loss in Greenland. Earth and Planetary Science Letters, 2012, 333-334, 293-303.	4.4	179
43	Dynamic thinning of glaciers on the Southern Antarctic Peninsula. Science, 2015, 348, 899-903.	12.6	176
44	Evaluation of the updated regional climate model RACMO2.3: summer snowfall impact on the Greenland Ice Sheet. Cryosphere, 2015, 9, 1831-1844.	3.9	175
45	Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes. Cryosphere, 2019, 13, 281-296.	3.9	171
46	Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nature Geoscience, 2015, 8, 927-932.	12.9	170
47	Groundâ€based measurements of spatial and temporal variability of snow accumulation in East Antarctica. Reviews of Geophysics, 2008, 46, .	23.0	164
48	Clouds enhance Greenland ice sheet meltwater runoff. Nature Communications, 2016, 7, 10266.	12.8	164
49	When can we expect extremely high surface temperatures?. Geophysical Research Letters, 2008, 35, .	4.0	157
50	Continuity of Ice Sheet Mass Loss in Greenland and Antarctica From the GRACE and GRACE Followâ€On Missions. Geophysical Research Letters, 2020, 47, e2020GL087291.	4.0	155
51	Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat. Communications Earth & Environment, 2020, 1, .	6.8	153
52	Accelerating changes in ice mass within Greenland, and the ice sheet's sensitivity to atmospheric forcing. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1934-1939.	7.1	152
53	A highâ€resolution record of Greenland mass balance. Geophysical Research Letters, 2016, 43, 7002-7010.	4.0	146
54	The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6. Cryosphere, 2020, 14, 3071-3096.	3.9	144

#	Article	IF	CITATIONS
55	Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18478-18483.	7.1	143
56	The Surface Energy Balance of Antarctic Snow and Blue Ice. Journal of Applied Meteorology and Climatology, 1995, 34, 902-926.	1.7	140
57	Elevation Changes in Antarctica Mainly Determined by Accumulation Variability. Science, 2008, 320, 1626-1629.	12.6	138
58	Meltwater produced by wind–albedo interaction stored in an East Antarctic ice shelf. Nature Climate Change, 2017, 7, 58-62.	18.8	138
59	Rapid ablation zone expansion amplifies north Greenland mass loss. Science Advances, 2019, 5, eaaw0123.	10.3	136
60	Glacial Isostatic Adjustment over Antarctica from combined ICESat and GRACE satellite data. Earth and Planetary Science Letters, 2009, 288, 516-523.	4.4	135
61	The Greenland and Antarctic ice sheets under 1.5 °C global warming. Nature Climate Change, 2018, 8, 1053-1061.	18.8	135
62	Precipitation, sublimation, and snow drift in the Antarctic Peninsula region from a regional atmospheric model. Journal of Geophysical Research, 2004, 109, .	3.3	133
63	Assessing and Improving the Quality of Unattended Radiation Observations in Antarctica. Journal of Atmospheric and Oceanic Technology, 2004, 21, 1417-1431.	1.3	132
64	Climate of the Greenland ice sheet using a high-resolution climate model – Part 1: Evaluation. Cryosphere, 2010, 4, 511-527.	3.9	132
65	Fate of the Atlantic Meridional Overturning Circulation: Strong decline under continued warming and Greenland melting. Geophysical Research Letters, 2016, 43, 12,252.	4.0	132
66	Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nature Geoscience, 2013, 6, 613-616.	12.9	131
67	The use of GPS horizontals for loading studies, with applications to northern California and southeast Greenland. Journal of Geophysical Research: Solid Earth, 2013, 118, 1795-1806.	3.4	130
68	Consistent evidence of increasing Antarctic accumulation with warming. Nature Climate Change, 2015, 5, 348-352.	18.8	130
69	Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation. Nature Communications, 2016, 7, 10525.	12.8	130
70	Surface mass balance model intercomparison for the Greenland ice sheet. Cryosphere, 2013, 7, 599-614.	3.9	127
71	Partitioning of melt energy and meltwater fluxes in the ablation zone of the west Greenland ice sheet. Cryosphere, 2008, 2, 179-189.	3.9	127
72	AÂdaily, 1†km resolution data set of downscaled Greenland ice sheet surface mass balance (1958–2015). Cryosphere, 2016, 10, 2361-2377.	3.9	126

#	Article	IF	CITATIONS
73	Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate. Cryosphere, 2015, 9, 1579-1600.	3.9	125
74	Regional Antarctic snow accumulation over the past 1000 years. Climate of the Past, 2017, 13, 1491-1513.	3.4	124
75	Airborneâ€radar and iceâ€core observations of annual snow accumulation over Thwaites Glacier, West Antarctica confirm the spatiotemporal variability of global and regional atmospheric models. Geophysical Research Letters, 2013, 40, 3649-3654.	4.0	119
76	Observing and Modeling Ice Sheet Surface Mass Balance. Reviews of Geophysics, 2019, 57, 376-420.	23.0	119
77	Greenland Ice Sheet surface mass balance 1870 to 2010 based on Twentieth Century Reanalysis, and links with global climate forcing. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	118
78	Mass balance of Greenland's three largest outlet glaciers, 2000-2010. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	116
79	Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling. Journal of Geophysical Research F: Earth Surface, 2013, 118, 315-330.	2.8	116
80	The seasonal cycle and interannual variability of surface energy balance and melt in the ablation zone of the west Greenland ice sheet. Cryosphere, 2011, 5, 377-390.	3.9	114
81	Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming. Nature, 2018, 564, 104-108.	27.8	114
82	Firn air depletion as a precursor of Antarctic ice-shelf collapse. Journal of Glaciology, 2014, 60, 205-214.	2.2	113
83	Changes in Antarctic temperature, wind and precipitation in response to the Antarctic Oscillation. Annals of Glaciology, 2004, 39, 119-126.	1.4	112
84	Surface mass-balance observations and automatic weather station data along a transect near Kangerlussuaq, West Greenland. Annals of Glaciology, 2005, 42, 311-316.	1.4	111
85	Satelliteâ€based estimates of Antarctic surface meltwater fluxes. Geophysical Research Letters, 2013, 40, 6148-6153.	4.0	111
86	GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet. Cryosphere, 2020, 14, 3935-3958.	3.9	111
87	Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland. Nature Geoscience, 2017, 10, 859-863.	12.9	110
88	Land Ice Freshwater Budget of the Arctic and North Atlantic Oceans: 1. Data, Methods, and Results. Journal of Geophysical Research: Oceans, 2018, 123, 1827-1837.	2.6	110
89	Factors Controlling the Near-Surface Wind Field in Antarctica*. Monthly Weather Review, 2003, 131, 733-743.	1.4	109
90	Sensitivity of Greenland Ice Sheet surface mass balance to surface albedo parameterization: a study with a regional climate model. Cryosphere, 2012, 6, 1175-1186.	3.9	109

#	Article	IF	CITATIONS
91	A new albedo parameterization for use in climate models over the Antarctic ice sheet. Journal of Geophysical Research, 2011, 116, .	3.3	107
92	Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models. Cryosphere, 2012, 6, 1275-1294.	3.9	106
93	Quantarctica, an integrated mapping environment for Antarctica, the Southern Ocean, and sub-Antarctic islands. Environmental Modelling and Software, 2021, 140, 105015.	4.5	106
94	Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model. Climate Dynamics, 2013, 41, 867-884.	3.8	104
95	Surface radiation balance in the ablation zone of the west Greenland ice sheet. Journal of Geophysical Research, 2008, 113, .	3.3	101
96	Self-regulation of ice flow varies across the ablation area in south-west Greenland. Cryosphere, 2015, 9, 603-611.	3.9	101
97	Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet. Geophysical Research Letters, 2017, 44, 11,463.	4.0	101
98	Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model. Climate Dynamics, 2016, 47, 1367-1381.	3.8	99
99	The Dominant Role of Extreme Precipitation Events in Antarctic Snowfall Variability. Geophysical Research Letters, 2019, 46, 3502-3511.	4.0	98
100	Extreme Precipitation and Climate Gradients in Patagonia Revealed by High-Resolution Regional Atmospheric Climate Modeling. Journal of Climate, 2014, 27, 4607-4621.	3.2	97
101	The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords. Geophysical Research Letters, 2016, 43, 9739-9748.	4.0	97
102	Twenty-one years of mass balance observations along the K-transect, West Greenland. Earth System Science Data, 2012, 4, 31-35.	9.9	97
103	Large surface meltwater discharge from the Kangerlussuaq sector of the Greenland ice sheet during the record-warm year 2010 explained by detailed energy balance observations. Cryosphere, 2012, 6, 199-209.	3.9	96
104	Significant contribution of insolation to Eemian melting of the Greenland ice sheet. Nature Geoscience, 2011, 4, 679-683.	12.9	94
105	Greenland Ice Sheet Surface Mass Loss: Recent Developments in Observation and Modeling. Current Climate Change Reports, 2017, 3, 345-356.	8.6	94
106	Irreversible mass loss of Canadian Arctic Archipelago glaciers. Geophysical Research Letters, 2013, 40, 870-874.	4.0	93
107	Mass loss of the Amundsen Sea Embayment of West Antarctica from four independent techniques. Geophysical Research Letters, 2014, 41, 8421-8428.	4.0	91
108	Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica, with airborne observations of snow accumulation. Cryosphere, 2014, 8, 1375-1392.	3.9	90

#	Article	IF	CITATIONS
109	Contemporary (1960–2012) Evolution of the Climate and Surface Mass Balance of the Greenland Ice Sheet. Surveys in Geophysics, 2014, 35, 1155-1174.	4.6	89
110	Limits to future expansion of surfaceâ€meltâ€enhanced ice flow into the interior of western Greenland. Geophysical Research Letters, 2015, 42, 1800-1807.	4.0	89
111	The modelled surface mass balance of the Antarctic Peninsula at 5.5†km horizontal resolution. Cryosphere, 2016, 10, 271-285.	3.9	89
112	Daily cycle of the surface energy balance in Antarctica and the influence of clouds. International Journal of Climatology, 2006, 26, 1587-1605.	3.5	88
113	Ultralow Surface Temperatures in East Antarctica From Satellite Thermal Infrared Mapping: The Coldest Places on Earth. Geophysical Research Letters, 2018, 45, 6124-6133.	4.0	88
114	Characteristics of the Antarctic surface mass balance, 1958–2002, using a regional atmospheric climate model. Annals of Glaciology, 2005, 41, 97-104.	1.4	87
115	Influence of persistent wind scour on the surface mass balance of Antarctica. Nature Geoscience, 2013, 6, 367-371.	12.9	87
116	Interruption of two decades of Jakobshavn Isbrae acceleration and thinning as regional ocean cools. Nature Geoscience, 2019, 12, 277-283.	12.9	87
117	Air Parcel Trajectories and Snowfall Related to Five Deep Drilling Locations in Antarctica Based on the ERA-15 Dataset*. Journal of Climate, 2002, 15, 1957-1968.	3.2	86
118	Ocean forcing drives glacier retreat in Greenland. Science Advances, 2021, 7, .	10.3	86
119	Surface radiation balance in Antarctica as measured with automatic weather stations. Journal of Geophysical Research, 2004, 109, .	3.3	85
120	Seasonal cycles of Antarctic surface energy balance from automatic weather stations. Annals of Glaciology, 2005, 41, 131-139.	1.4	85
121	Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14156-14161.	7.1	85
122	Modeling of oceanâ€induced ice melt rates of five west Greenland glaciers over the past two decades. Geophysical Research Letters, 2016, 43, 6374-6382.	4.0	85
123	Rapid expansion of Greenland's low-permeability ice slabs. Nature, 2019, 573, 403-407.	27.8	84
124	Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet. Cryosphere, 2018, 12, 3813-3825.	3.9	83
125	Temporal and Spatial Variations of the Aerodynamic Roughness Length in the Ablation Zone of the Greenland Ice Sheet. Boundary-Layer Meteorology, 2008, 128, 315-338.	2.3	82
126	Climate of the Greenland ice sheet using a high-resolution climate model – Part 2: Near-surface climate and energy balance. Cryosphere, 2010, 4, 529-544.	3.9	81

#	Article	IF	CITATIONS
127	Aerial Photographs Reveal Late–20th-Century Dynamic Ice Loss in Northwestern Greenland. Science, 2012, 337, 569-573.	12.6	81
128	Modeling drifting snow in Antarctica with a regional climate model: 1. Methods and model evaluation. Journal of Geophysical Research, 2012, 117, .	3.3	81
129	Influence of ice-sheet geometry and supraglacial lakes on seasonal ice-flow variability. Cryosphere, 2013, 7, 1185-1192.	3.9	80
130	Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula. Cryosphere, 2012, 6, 353-363.	3.9	79
131	Improving the Representation of Polar Snow and Firn in the Community Earth System Model. Journal of Advances in Modeling Earth Systems, 2017, 9, 2583-2600.	3.8	78
132	Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change. Cryosphere, 2014, 8, 743-760.	3.9	77
133	Extent of low-accumulation 'wind glaze' areas on the East Antarctic plateau: implications for continental ice mass balance. Journal of Glaciology, 2012, 58, 633-647.	2.2	76
134	Observed thinning of Totten Glacier is linked to coastal polynya variability. Nature Communications, 2013, 4, 2857.	12.8	76
135	Four decades of Antarctic surface elevation changes from multi-mission satellite altimetry. Cryosphere, 2019, 13, 427-449.	3.9	76
136	Snowfall in coastal West Antarctica much greater than previously assumed. Geophysical Research Letters, 2006, 33, .	4.0	75
137	Depth and Density of the Antarctic Firn Layer. Arctic, Antarctic, and Alpine Research, 2008, 40, 432-438.	1.1	75
138	Antarctic ice-mass balance 2003 to 2012: regional reanalysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment based on GPS uplift rates. Cryosphere, 2013, 7, 1499-1512.	3.9	75
139	State of the Climate in 2008. Bulletin of the American Meteorological Society, 2009, 90, S1-S196.	3.3	74
140	Inland thinning on the Greenland ice sheet controlled by outlet glacier geometry. Nature Geoscience, 2017, 10, 366-369.	12.9	74
141	Temporal and spatial variability of the surface mass balance in Dronning Maud Land, Antarctica, as derived from automatic weather stations. Journal of Glaciology, 2003, 49, 512-520.	2.2	73
142	Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960–2014. Cryosphere, 2015, 9, 2009-2025.	3.9	73
143	Recent snowfall anomalies in Dronning Maud Land, East Antarctica, in a historical and future climate perspective. Geophysical Research Letters, 2013, 40, 2684-2688.	4.0	72
144	A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps. Nature Communications, 2017, 8, 14730.	12.8	72

#	Article	IF	CITATIONS
145	Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models. Cryosphere, 2020, 14, 2331-2368.	3.9	72
146	Rapid loss of firn pore space accelerates 21st century Greenland mass loss. Geophysical Research Letters, 2013, 40, 2109-2113.	4.0	70
147	Coupled simulations of Greenland Ice Sheet and climate change up to A.D. 2300. Geophysical Research Letters, 2015, 42, 3927-3935.	4.0	70
148	Drifting snow climate of the Greenland ice sheet: a study with a regional climate model. Cryosphere, 2012, 6, 891-899.	3.9	69
149	Evidence of meltwater retention within the Greenland ice sheet. Cryosphere, 2013, 7, 1433-1445.	3.9	69
150	The Freshwater System West of the Antarctic Peninsula: Spatial and Temporal Changes. Journal of Climate, 2013, 26, 1669-1684.	3.2	68
151	<i>Brief Communication</i> "Expansion of meltwater lakes on the Greenland Ice Sheet". Cryosphere, 2013, 7, 201-204.	3.9	68
152	The observed katabatic flow at the edge of the Greenland ice sheet during GIMEX-91. Global and Planetary Change, 1994, 9, 3-15.	3.5	67
153	The Summer Surface Energy Balance of the High Antarctic Plateau. Boundary-Layer Meteorology, 2005, 115, 289-317.	2.3	67
154	The 1958–2009 Greenland ice sheet surface melt and the mid-tropospheric atmospheric circulation. Climate Dynamics, 2011, 36, 139-159.	3.8	67
155	Refreezing on the Greenland ice sheet: a comparison of parameterizations. Cryosphere, 2012, 6, 743-762.	3.9	67
156	Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica. Cryosphere, 2014, 8, 125-135.	3.9	67
157	Using MODIS land surface temperatures and the Crocus snow model to understand the warm bias of ERA-Interim reanalyses at the surface in Antarctica. Cryosphere, 2014, 8, 1361-1373.	3.9	67
158	Explaining the presence of perennial liquid water bodies in the firn of the Greenland Ice Sheet. Geophysical Research Letters, 2014, 41, 476-483.	4.0	66
159	Direct measurements of meltwater runoff on the Greenland ice sheet surface. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10622-E10631.	7.1	66
160	Six Decades of Glacial Mass Loss in the Canadian Arctic Archipelago. Journal of Geophysical Research F: Earth Surface, 2018, 123, 1430-1449.	2.8	65
161	Intense Winter Surface Melt on an Antarctic Ice Shelf. Geophysical Research Letters, 2018, 45, 7615-7623.	4.0	65
162	Surface energy balance in the ablation zone of Midtdalsbreen, a glacier in southern Norway: Interannual variability and the effect of clouds. Journal of Geophysical Research, 2008, 113, .	3.3	64

#	Article	IF	CITATIONS
163	A new ice-core record from Lomonosovfonna, Svalbard: viewing the 1920–97 data in relation to present climate and environmental conditions. Journal of Glaciology, 2001, 47, 335-345.	2.2	63
164	The role of radiation penetration in the energy budget of the snowpack at Summit, Greenland. Cryosphere, 2009, 3, 155-165.	3.9	62
165	Oceanic controls on the mass balance of Wilkins Ice Shelf, Antarctica. Journal of Geophysical Research, 2012, 117, .	3.3	62
166	Coupled regional climate–ice-sheet simulation shows limited Greenland ice loss during the Eemian. Climate of the Past, 2013, 9, 1773-1788.	3.4	62
167	Firn Meltwater Retention on the Greenland Ice Sheet: A Model Comparison. Frontiers in Earth Science, 2017, 5, .	1.8	62
168	Insignificant change in Antarctic snowmelt volume since 1979. Geophysical Research Letters, 2012, 39, .	4.0	61
169	Closing the sea level budget on a regional scale: Trends and variability on the Northwestern European continental shelf. Geophysical Research Letters, 2016, 43, 10864-10872.	4.0	61
170	The semi-annual oscillation and Antarctic climate. Part 1: influence on near surface temperatures (1957–79). Antarctic Science, 1998, 10, 175-183.	0.9	60
171	Modelling snowdrift sublimation on an Antarctic ice shelf. Cryosphere, 2010, 4, 179-190.	3.9	60
172	Representing Greenland ice sheet freshwater fluxes in climate models. Geophysical Research Letters, 2015, 42, 6373-6381.	4.0	60
173	Temperature and Wind Climate of the Antarctic Peninsula as Simulated by a High-Resolution Regional Atmospheric Climate Model. Journal of Climate, 2015, 28, 7306-7326.	3.2	60
174	The near-surface wind field over the Antarctic continent. International Journal of Climatology, 2004, 24, 1973-1982.	3.5	59
175	Analysis of meteorological data and the surface energy balance of McCall Glacier, Alaska, USA. Journal of Glaciology, 2005, 51, 451-461.	2.2	59
176	Surface layer climate and turbulent exchange in the ablation zone of the west Greenland ice sheet. International Journal of Climatology, 2009, 29, 2309-2323.	3.5	59
177	Validation of the summertime surface energy budget of Larsen C Ice Shelf (Antarctica) as represented in three highâ€resolution atmospheric models. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1335-1347.	3.3	59
178	Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers. Journal of Claciology, 2016, 62, 861-887.	2.2	59
179	Spatial and temporal variation of sublimation on Antarctica: Results of a high-resolution general circulation model. Journal of Geophysical Research, 1997, 102, 29765-29777.	3.3	58
180	Momentum Budget of the East Antarctic Atmospheric Boundary Layer: Results of a Regional Climate Model. Journals of the Atmospheric Sciences, 2002, 59, 3117-3129.	1.7	58

MICHIEL VAN DEN BROEKE

#	Article	IF	CITATIONS
181	A study of the surface mass balance in Dronning Maud Land, Antarctica, using automatic weather stationS. Journal of Glaciology, 2004, 50, 565-582.	2.2	58
182	Increasing meltwater discharge from the Nuuk region of the Greenland ice sheet and implications for mass balance (1960–2012). Journal of Glaciology, 2014, 60, 314-322.	2.2	58
183	Meteorological regimes and accumulation patterns at Utsteinen, Dronning Maud Land, East Antarctica: Analysis of two contrasting years. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1700-1715.	3.3	57
184	A Comparison of Antarctic Ice Sheet Surface Mass Balance from Atmospheric Climate Models and In Situ Observations. Journal of Climate, 2016, 29, 5317-5337.	3.2	57
185	The K-transect in west Greenland: Automatic weather station data (1993–2016). Arctic, Antarctic, and Alpine Research, 2018, 50, .	1.1	57
186	The Signature of Southern Hemisphere Atmospheric Circulation Patterns in Antarctic Precipitation. Geophysical Research Letters, 2017, 44, 11580-11589.	4.0	56
187	Momentum, Heat, and Moisture Budgets of the Katabatic Wind Layer over a Midlatitude Glacier in Summer. Journal of Applied Meteorology and Climatology, 1997, 36, 763-774.	1.7	55
188	On the Interpretation of Antarctic Temperature Trends. Journal of Climate, 2000, 13, 3885-3889.	3.2	55
189	Assessing spatio-temporal variability and trends in modelled and measured Greenland Ice Sheet albedo (2000–2013). Cryosphere, 2014, 8, 2293-2312.	3.9	55
190	Coupling of climate models and ice sheet models by surface mass balance gradients: application to the Greenland Ice Sheet. Cryosphere, 2012, 6, 255-272.	3.9	54
191	Identification of Antarctic ablation areas using a regional atmospheric climate model. Journal of Geophysical Research, 2006, 111, .	3.3	53
192	The Parameterisation of Scalar Transfer over Rough Ice. Boundary-Layer Meteorology, 2008, 128, 339-355.	2.3	53
193	Structure and diurnal variation of the atmospheric boundary layer over a mid-latitude glacier in summer. Boundary-Layer Meteorology, 1997, 83, 183-205.	2.3	52
194	Climate variables along a traverse line in Dronning Maud Land, East Antarctica. Journal of Glaciology, 1999, 45, 295-302.	2.2	52
195	Present and future variations in Antarctic firn air content. Cryosphere, 2014, 8, 1711-1723.	3.9	52
196	Exploration of Antarctic Ice Sheet 100-year contribution to sea level rise and associated model uncertainties using the ISSM framework. Cryosphere, 2018, 12, 3511-3534.	3.9	52
197	Low elevation of Svalbard glaciers drives high mass loss variability. Nature Communications, 2020, 11, 4597.	12.8	52
198	Momentum and scalar transfer coefficients over aerodynamically smooth antarctic surfaces. Boundary-Layer Meteorology, 1995, 74, 89-111.	2.3	51

#	Article	IF	CITATIONS
199	Moisture source of precipitation in Western Dronning Maud Land, Antarctica. Antarctic Science, 2001, 13, 210-220.	0.9	51
200	Greenland Surface Mass Balance as Simulated by the Community Earth System Model. Part I: Model Evaluation and 1850–2005 Results. Journal of Climate, 2013, 26, 7793-7812.	3.2	51
201	Sensible heat exchange at the Antarctic snow surface: a study with automatic weather stations. International Journal of Climatology, 2005, 25, 1081-1101.	3.5	50
202	Modeling the isotopic composition of Antarctic snow using backward trajectories: Simulation of snow pit records. Journal of Geophysical Research, 2006, 111, .	3.3	50
203	Temperature thresholds for degreeâ€day modelling of Greenland ice sheet melt rates. Geophysical Research Letters, 2010, 37, .	4.0	50
204	Ice Sheets and Sea Level: Thinking Outside the Box. Surveys in Geophysics, 2011, 32, 495-505.	4.6	50
205	Surface energy balance and katabatic flow over glacier and tundra during GIMEX-91. Global and Planetary Change, 1994, 9, 17-28.	3.5	49
206	A 40-year accumulation dataset for Adelie Land, Antarctica and its application for model validation. Climate Dynamics, 2012, 38, 75-86.	3.8	49
207	Greenland Ice Sheet Mass Balance Reconstruction. Part I: Net Snow Accumulation (1600–2009). Journal of Climate, 2013, 26, 3919-3934.	3.2	49
208	Evaluation of the antarctic surface wind climate from ERA reanalyses and RACMO2/ANT simulations based on automatic weather stations. Climate Dynamics, 2013, 40, 353-376.	3.8	48
209	Atmospheric forcing of rapid marine-terminating glacier retreat in the Canadian Arctic Archipelago. Science Advances, 2019, 5, eaau8507.	10.3	48
210	The Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL) high-priority candidate mission. Cryosphere, 2020, 14, 2235-2251.	3.9	48
211	A new surface accumulation map for western Dronning Maud Land, Antarctica, from interpolation of point measurements. Journal of Glaciology, 2007, 53, 385-398.	2.2	47
212	Sediment plumes as a proxy for local ice-sheet runoff in Kangerlussuaq Fjord, West Greenland. Journal of Glaciology, 2010, 56, 813-821.	2.2	47
213	The Isotopic Composition of Present-Day Antarctic Snow in a Lagrangian Atmospheric Simulation*. Journal of Climate, 2007, 20, 739-756.	3.2	46
214	Modelled glacier response to centennial temperature and precipitation trends on the Antarctic Peninsula. Nature Climate Change, 2014, 4, 993-998.	18.8	46
215	Contrasts in the response of adjacent fjords and glaciers to ice-sheet surface melt in West Greenland. Annals of Glaciology, 2016, 57, 25-38.	1.4	46
216	Changing pattern of ice flow and mass balance for glaciers discharging into the Larsen A and B embayments, Antarctic Peninsula, 2011 to 2016. Cryosphere, 2018, 12, 1273-1291.	3.9	46

#	Article	IF	CITATIONS
217	Changes in the firn structure of the western Greenland Ice Sheet caused by recent warming. Cryosphere, 2015, 9, 1203-1211.	3.9	46
218	Cloud-to-Ground Lightning Production in Strongly Forced, Low-Instability Convective Lines Associated with Damaging Wind. Weather and Forecasting, 2005, 20, 517-530.	1.4	45
219	Glacier dynamics at Helheim and Kangerdlugssuaq glaciers, southeast Greenland, since the Little Ice Age. Cryosphere, 2014, 8, 1497-1507.	3.9	45
220	Mass balance of the ice sheets and glaciers – Progress since AR5 and challenges. Earth-Science Reviews, 2020, 201, 102976.	9.1	44
221	Comparison of the meteorology and surface energy balance at Storbreen and Midtdalsbreen, two glaciers in southern Norway. Cryosphere, 2009, 3, 57-74.	3.9	43
222	Sensitivity of Greenland Ice Sheet surface mass balance to perturbations in sea surface temperature and sea ice cover: a study with the regional climate model MAR. Cryosphere, 2014, 8, 1871-1883.	3.9	43
223	Rapid dynamic activation of a marineâ€based Arctic ice cap. Geophysical Research Letters, 2014, 41, 8902-8909.	4.0	43
224	High variability of climate and surface mass balance induced by Antarctic ice rises. Journal of Glaciology, 2014, 60, 1101-1110.	2.2	43
225	Observation and simulation of barrier winds at the western margin of the Greenland ice sheet. Quarterly Journal of the Royal Meteorological Society, 1996, 122, 1365-1383.	2.7	42
226	Accumulation and proxy-temperature variability in Dronning Maud Land, Antarctica, determined from shallow firn cores. Annals of Glaciology, 1999, 29, 17-22.	1.4	42
227	Earth System Mass Transport Mission (e.motion): A Concept for Future Earth Gravity Field Measurements from Space. Surveys in Geophysics, 2013, 34, 141-163.	4.6	42
228	Brief communication: Improved simulation of the present-day Greenland firn layer (1960–2016). Cryosphere, 2018, 12, 1643-1649.	3.9	42
229	THE INFLUENCE OF CLOUDS ON THE RADIATION BUDGET OF ICE AND SNOW SURFACES IN ANTARTICA AND GREENLAND IN SUMMER. International Journal of Climatology, 1996, 16, 1281-1296.	3.5	41
230	The semi-annual oscillation and Antarctic climate. Part 4: a note on sea ice cover in the Amundsen and Bellingshausen Seas. International Journal of Climatology, 2000, 20, 455-462.	3.5	41
231	Greenland Surface Mass Balance as Simulated by the Community Earth System Model. Part II: Twenty-First-Century Changes. Journal of Climate, 2014, 27, 215-226.	3.2	41
232	Evaluation of temperature and wind over Antarctica in a Regional Atmospheric Climate Model using 1 year of automatic weather station data and upper air observations. Journal of Geophysical Research, 2005, 110, .	3.3	40
233	Modeling drifting snow in Antarctica with a regional climate model: 2. Results. Journal of Geophysical Research, 2012, 117, .	3.3	40
234	Model calculations of the age of firn air across the Antarctic continent. Atmospheric Chemistry and Physics, 2004, 4, 1365-1380.	4.9	39

#	Article	IF	CITATIONS
235	Polarimetric Radar Observations at Low Levels during Tornado Life Cycles in a Small Sample of Classic Southern Plains Supercells*. Journal of Applied Meteorology and Climatology, 2008, 47, 1232-1247.	1.5	39
236	The Impact of Föhn Winds on Surface Energy Balance During the 2010–2011 Melt Season Over Larsen C Ice Shelf, Antarctica. Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,062.	3.3	39
237	The semi-annual oscillation and Antarctic climate. Part 2: recent changes. Antarctic Science, 1998, 10, 184-191.	0.9	38
238	A modeling study of the effect of runoff variability on the effective pressure beneath Russell Glacier, West Greenland. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1834-1848.	2.8	38
239	A 5 year record of surface energy and mass balance from the ablation zone of Storbreen, Norway. Journal of Glaciology, 2008, 54, 245-258.	2.2	37
240	Surface energy balance, melt and sublimation at Neumayer Station, East Antarctica. Antarctic Science, 2010, 22, 87.	0.9	37
241	On the recent elevation changes at the Flade Isblink Ice Cap, northern Greenland. Journal of Geophysical Research, 2011, 116, .	3.3	36
242	Changing surface–atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland. Cryosphere, 2015, 9, 2163-2181.	3.9	36
243	Daily cycle of the surface layer and energy balance on the high Antarctic Plateau. Antarctic Science, 2005, 17, 121-133.	0.9	35
244	Antarctic firn compaction rates from repeat-track airborne radar data: I. Methods. Annals of Glaciology, 2015, 56, 155-166.	1.4	35
245	High resolution (1 km) positive degree-day modelling of Greenland ice sheet surface mass balance, 1870–2012 using reanalysis data. Journal of Glaciology, 2017, 63, 176-193.	2.2	35
246	Summertime atmospheric circulation in the vicinity of a blue ice area in Queen Maud Land, Antarctica. Boundary-Layer Meteorology, 1995, 72, 411-438.	2.3	34
247	Firn depth correction along the Antarctic grounding line. Antarctic Science, 2008, 20, 513-517.	0.9	34
248	Partitioning effects from ocean and atmosphere on the calving stability of Kangerdlugssuaq Glacier, East Greenland. Annals of Glaciology, 2012, 53, 249-256.	1.4	34
249	Heat, momentum and moisture budgets of the katabatic layer over the melting zone of the west Greenland ice sheet in summer. Boundary-Layer Meteorology, 1994, 71, 393-413.	2.3	33
250	Strong-wind events and their influence on the formation of snow dunes: observations from Kohnen station, Dronning Maud Land, Antarctica. Journal of Glaciology, 2010, 56, 891-902.	2.2	33
251	Sea-Level Rise: From Global Perspectives to Local Services. Frontiers in Marine Science, 2022, 8, .	2.5	33
252	Numerical Studies with a Regional Atmospheric Climate Model Based on Changes in the Roughness Length for Momentum and Heat Over Antarctica. Boundary-Layer Meteorology, 2004, 111, 313-337.	2.3	32

#	Article	IF	CITATIONS
253	Tropical Pacific–high latitude south Atlantic teleconnections as seen in <i>δ</i> ¹⁸ 0 variability in Antarctic coastal ice cores. Journal of Geophysical Research, 2009, 114, .	3.3	32
254	Surface and snowdrift sublimation at Princess Elisabeth station, East Antarctica. Cryosphere, 2012, 6, 841-857.	3.9	32
255	Impact of model resolution on simulated wind, drifting snow and surface mass balance in Terre Adélie, East Antarctica. Journal of Claciology, 2012, 58, 821-829.	2.2	32
256	Englacial latent-heat transfer has limited influence on seaward ice flux in western Greenland. Journal of Glaciology, 2017, 63, 1-16.	2.2	32
257	Representation of Antarctic Katabatic Winds in a High-Resolution GCM and a Note on Their Climate Sensitivity. Journal of Climate, 1997, 10, 3111-3130.	3.2	32
258	Firn accumulation records for the past 1000 years on the basis of dielectric profiling of six cores from Dronning Maud Land, Antarctica. Journal of Glaciology, 2004, 50, 279-291.	2.2	31
259	Assessing the retrieval of cloud properties from radiation measurements over snow and ice. International Journal of Climatology, 2011, 31, 756-769.	3.5	31
260	Computing the volume response of the Antarctic Peninsula ice sheet to warming scenarios to 2200. Journal of Glaciology, 2013, 59, 397-409.	2.2	31
261	Analysis of clearâ€sky Antarctic snow albedo using observations and radiative transfer modeling. Journal of Geophysical Research, 2008, 113, .	3.3	30
262	Momentum budget of the atmospheric boundary layer over the Greenland ice sheet and its surrounding seas. Journal of Geophysical Research, 2011, 116, .	3.3	30
263	Quantifying the seasonal "breathing―of the Antarctic ice sheet. Geophysical Research Letters, 2012, 39,	4.0	30
264	The K-transect on the western Greenland Ice Sheet: Surface energy balance (2003–2016). Arctic, Antarctic, and Alpine Research, 2018, 50, .	1.1	30
265	A wireless subglacial probe for deep ice applications. Journal of Glaciology, 2012, 58, 841-848.	2.2	29
266	Greenland Ice Sheet flow response to runoff variability. Geophysical Research Letters, 2016, 43, 11295-11303.	4.0	29
267	A 21st Century Warming Threshold for Sustained Greenland Ice Sheet Mass Loss. Geophysical Research Letters, 2021, 48, e2020GL090471.	4.0	29
268	Accumulation variability derived from an ice core from coastal Dronning Maud Land, Antarctica. Annals of Glaciology, 2004, 39, 339-345.	1.4	28
269	Accumulation variability over a small area in east Dronning Maud Land, Antarctica, as determined from shallow firn cores and snow pits: some implications for ice-core records. Journal of Glaciology, 2005, 51, 343-352.	2.2	28
270	Greenland climate change: from the past to the future. Wiley Interdisciplinary Reviews: Climate Change, 2012, 3, 427-449.	8.1	28

#	Article	IF	CITATIONS
271	Controls on short-term variations in Greenland glacier dynamics. Journal of Glaciology, 2013, 59, 883-892.	2.2	28
272	Response of Wintertime Antarctic Temperatures to the Antarctic Oscillation: Results of a Regional Climate Model. Antarctic Research Series, 0, , 43-58.	0.2	28
273	A model study of the response of dry and wet firn to climate change. Annals of Glaciology, 2015, 56, 1-8.	1.4	28
274	The modelled liquid water balance of the Greenland Ice Sheet. Cryosphere, 2017, 11, 2507-2526.	3.9	28
275	Quantifying the snowmelt–albedo feedback at Neumayer Station, East Antarctica. Cryosphere, 2019, 13, 1473-1485.	3.9	28
276	Future Sea Level Change Under Coupled Model Intercomparison Project Phase 5 and Phase 6 Scenarios From the Greenland and Antarctic Ice Sheets. Geophysical Research Letters, 2021, 48, e2020GL091741.	4.0	28
277	Recurring dynamically induced thinning during 1985 to 2010 on Upernavik IsstrÃ,m, West Greenland. Journal of Geophysical Research F: Earth Surface, 2013, 118, 111-121.	2.8	27
278	Surface energy balance in the ablation zone of LangfjordjÃ,kelen, an arctic, maritime glacier in northern Norway. Journal of Glaciology, 2014, 60, 57-70.	2.2	27
279	Reconstructing Greenland Ice Sheet meltwater discharge through the Watson River (1949–2017). Arctic, Antarctic, and Alpine Research, 2018, 50, .	1.1	27
280	A Multidecadal Analysis of Föhn Winds over Larsen C Ice Shelf from a Combination of Observations and Modeling. Atmosphere, 2018, 9, 172.	2.3	27
281	Back to the Future: Using Long-Term Observational and Paleo-Proxy Reconstructions to Improve Model Projections of Antarctic Climate. Geosciences (Switzerland), 2019, 9, 255.	2.2	27
282	Heat budget of the East Antarctic lower atmosphere derived from a regional atmospheric climate model. Journal of Geophysical Research, 2007, 112, .	3.3	26
283	Runoff and mass-balance simulations from the Greenland Ice Sheet at Kangerlussuaq (SÃ,ndre) Tj ETQq1 1 0.784	314 rgBT / 3.9	Overlock 10
284	Regional grid refinement in an Earth system model: impacts on the simulated Greenland surface mass balance. Cryosphere, 2019, 13, 1547-1564.	3.9	26
285	Development of physically based liquid water schemes for Greenland firn-densification models. Cryosphere, 2019, 13, 1819-1842.	3.9	26
286	Greenland ice sheet mass balance from 1840 through next week. Earth System Science Data, 2021, 13, 5001-5025.	9.9	26
287	A benchmark dataset of in situ Antarctic surface melt rates and energy balance. Journal of Glaciology, 2020, 66, 291-302.	2.2	25
288	Presentâ€Day Greenland Ice Sheet Climate and Surface Mass Balance in CESM2. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005318.	2.8	24

#	Article	IF	CITATIONS
289	Characteristics of the lower ablation zone of the West Greenland ice sheet for energy-balance modelling. Annals of Glaciology, 1996, 23, 160-166.	1.4	23
290	Increased variability in Greenland Ice Sheet runoff from satellite observations. Nature Communications, 2021, 12, 6069.	12.8	23
291	The climate sensitivity of Antarctic blue-ice areas. Annals of Glaciology, 1995, 21, 157-161.	1.4	22
292	The future sea-level rise contribution of Greenland's glaciers and ice caps. Environmental Research Letters, 2013, 8, 025005.	5.2	22
293	Brief communication: The global signature of post-1900 land ice wastage on vertical land motion. Cryosphere, 2017, 11, 1327-1332.	3.9	22
294	Drifting snow measurements on the Greenland Ice Sheet and their application for model evaluation. Cryosphere, 2014, 8, 801-814.	3.9	22
295	Dry extraction of 14CO2 and 14CO from Antarctic ice. Nuclear Instruments & Methods in Physics Research B, 1994, 92, 331-334.	1.4	21
296	Ice core melt features in relation to Antarctic coastal climate. Antarctic Science, 2006, 18, 271-278.	0.9	21
297	Application of GRACE to the assessment of model-based estimates of monthly Greenland Ice Sheet mass balanceÂ(2003–2012). Cryosphere, 2016, 10, 1965-1989.	3.9	21
298	Analyses of firn gas samples from Dronning Maud Land, Antarctica: Study of nonmethane hydrocarbons and methyl chloride. Journal of Geophysical Research, 2004, 109, .	3.3	20
299	Using GPS and absolute gravity observations to separate the effects of present-day and Pleistocene ice-mass changes in South East Greenland. Earth and Planetary Science Letters, 2017, 459, 127-135.	4.4	20
300	Characteristics of the modelled meteoric freshwater budget of the western Antarctic Peninsula. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 139, 31-39.	1.4	20
301	Greenland Mass Trends From Airborne and Satellite Altimetry During 2011–2020. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	2.8	20
302	The semiannual oscillation and Antarctic climate, part 5: impact on the annual temperature cycle as derived from NCEP/NCAR re-analysis. Climate Dynamics, 2000, 16, 369-377.	3.8	19
303	Oxygen isotope variability in snow from western Dronning Maud Land, Antarctica and its relation to temperature. Tellus, Series B: Chemical and Physical Meteorology, 2005, 57, 423-435.	1.6	19
304	Strong-wind events and their impact on the near-surface climate at Kohnen Station on the Antarctic Plateau. Antarctic Science, 2007, 19, 507-519.	0.9	19
305	An extreme precipitation event in Dronning Maud Land, Antarctica: a case study with the Antarctic Mesoscale Prediction System. Polar Research, 2010, 29, 330-344.	1.6	19
306	Improved ice loss estimate of the northwestern Greenland ice sheet. Journal of Geophysical Research: Solid Earth, 2013, 118, 698-708.	3.4	19

#	Article	IF	CITATIONS
307	Evaluating Greenland glacial isostatic adjustment corrections using GRACE, altimetry and surface mass balance data. Environmental Research Letters, 2014, 9, 014004.	5.2	19
308	Antarctic firn compaction rates from repeat-track airborne radar data: II. Firn model evaluation. Annals of Glaciology, 2015, 56, 167-174.	1.4	19
309	Accelerated mass loss from Greenland ice sheet: Links to atmospheric circulation in the North Atlantic. Global and Planetary Change, 2015, 128, 61-71.	3.5	19
310	Melting over the northeast Antarctic Peninsula (1999–2009): evaluation of a high-resolution regional climate model. Cryosphere, 2018, 12, 2901-2922.	3.9	19
311	The semi-annual oscillation and Antarctic climate. Part 3: the role of near-surface wind speed and cloudiness. International Journal of Climatology, 2000, 20, 117-130.	3.5	18
312	The Greenland Sea Jet: A mechanism for wind-driven sea ice export through Fram Strait. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	18
313	Regional climate of the Larsen B embayment 1980–2014. Journal of Glaciology, 2017, 63, 683-690.	2.2	18
314	An ice sheet model validation framework for the Greenland ice sheet. Geoscientific Model Development, 2017, 10, 255-270.	3.6	18
315	Present and future near-surface wind climate of Greenland from high resolution regional climate modelling. Climate Dynamics, 2014, 42, 1595-1611.	3.8	17
316	Sensitivity, stability and future evolution of the world's northernmost ice cap, Hans Tausen Iskappe (Greenland). Cryosphere, 2017, 11, 805-825.	3.9	17
317	A Retrospective, Iterative, Geometry-Based (RIGB) tilt-correction method for radiation observed by automatic weather stations on snow-covered surfaces: application to Greenland. Cryosphere, 2016, 10, 727-741.	3.9	17
318	Deformation and failure of the ice bridge on the Wilkins Ice Shelf, Antarctica. Annals of Glaciology, 2010, 51, 49-55.	1.4	16
319	Observationally constrained surface mass balance of Larsen C ice shelf, Antarctica. Cryosphere, 2017, 11, 2411-2426.	3.9	16
320	Application of PROMICE Qâ€Transect in Situ Accumulation and Ablation Measurements (2000–2017) to Constrain Mass Balance at the Southern Tip of the Greenland Ice Sheet. Journal of Geophysical Research F: Earth Surface, 2018, 123, 1235-1256.	2.8	16
321	Long-term surface energy balance of the western Greenland Ice Sheet and the role of large-scale circulation variability. Cryosphere, 2020, 14, 4181-4199.	3.9	16
322	Seasonal mass variations show timing and magnitude of meltwater storage in the Greenland Ice Sheet. Cryosphere, 2018, 12, 2981-2999.	3.9	15
323	The Surface Energy Balance at Panda 1 Station, Princess Elizabeth Land: A Typical Katabatic Wind Region in East Antarctica. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030378.	3.3	15
324	Simulation of Atmospheric Circulation during the GIMEX 91 Experiment Using a Meso-Î ³ Primitive Equations Model. Journal of Climate, 1995, 8, 2843-2859.	3.2	14

#	Article	IF	CITATIONS
325	Evaluation of Reconstructions of Snow/Ice Melt in Greenland by Regional Atmospheric Climate Models Using Laser Altimetry Data. Geophysical Research Letters, 2018, 45, 8324-8333.	4.0	14
326	Monsoon Clouds Control the Summer Surface Energy Balance on East Rongbuk Glacier (6,523Âm Above) Tj ETC Atmospheres, 2021, 126, e2020JD033998.	2q0 0 0 rgl 3.3	BT /Overlock 1 14
327	Accelerating Ice Loss From Peripheral Glaciers in North Greenland. Geophysical Research Letters, 2022, 49, .	4.0	14
328	Modelling the isotopic composition of snow using backward trajectories: a particular precipitation event in Dronning Maud Land, Antarctica. Annals of Glaciology, 2004, 39, 293-299.	1.4	13
329	On the formation of blue ice on Byrd Glacier, Antarctica. Journal of Glaciology, 2014, 60, 41-50.	2.2	13
330	Spatial Variability of the Snowmeltâ€Albedo Feedback in Antarctica. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005696.	2.8	13
331	An exploratory modelling study of perennial firn aquifers in the Antarctic Peninsula for the period 1979–2016. Cryosphere, 2021, 15, 695-714.	3.9	13
332	A model study on the relation between atmospheric boundary-layer dynamics and poleward atmospheric moisture transport in Antarctica. Tellus, Series A: Dynamic Meteorology and Oceanography, 2002, 54, 497-511.	1.7	13
333	Recent surface mass balance from Syowa Station to Dome F, East Antarctica: comparison of field observations, atmospheric reanalyses, and a regional atmospheric climate model. Climate Dynamics, 2015, 45, 2885-2899.	3.8	12
334	Evaluation of a new snow albedo scheme for the Greenland ice sheet in the Regional Atmospheric Climate Model (RACMO2). Cryosphere, 2020, 14, 3645-3662.	3.9	12
335	Structure and dynamics of the summertime atmospheric boundary layer over the Antarctic Plateau: 1. Measurements and model validation. Journal of Geophysical Research, 2006, 111, .	3.3	11
336	Extreme Snowmelt in Northern Greenland During Summer 2008. Eos, 2008, 89, 391-391.	0.1	11
337	Extreme windâ€ice interaction over Recovery Ice Stream, East Antarctica. Geophysical Research Letters, 2015, 42, 8064-8071.	4.0	11
338	Improved GRACE regional mass balance estimates of the Greenland ice sheet cross-validated with the input–output method. Cryosphere, 2016, 10, 895-912.	3.9	11
339	A module to convert spectral to narrowband snow albedo for use in climate models: SNOWBAL v1.2. Geoscientific Model Development, 2019, 12, 5157-5175.	3.6	11
340	Brief communication: CESM2 climate forcing (1950–2014) yields realistic Greenland ice sheet surface mass balance. Cryosphere, 2020, 14, 1425-1435.	3.9	11
341	Remapping of Greenland ice sheet surface mass balance anomalies for large ensemble sea-level change projections. Cryosphere, 2020, 14, 1747-1762.	3.9	11
342	Importance of precipitation seasonality for the interpretation of Eemian ice core isotope records from Greenland. Climate of the Past, 2013, 9, 1589-1600.	3.4	10

#	Article	IF	CITATIONS
343	Modelled glacier dynamics over the last quarter of a century at Jakobshavn Isbræ. Cryosphere, 2016, 10, 597-611.	3.9	10
344	Using remotely sensed data from AIRS to estimate the vapor flux on the Greenland ice sheet: Comparisons with observations and a regional climate model. Journal of Geophysical Research D: Atmospheres, 2017, 122, 202-229.	3.3	10
345	Cryorad: A Low Frequency Wideband Radiometer Mission for the Study of the Cryosphere. , 2018, , .		10
346	Sensitivity of inverse glacial isostatic adjustment estimates over Antarctica. Cryosphere, 2020, 14, 349-366.	3.9	10
347	Evaluation of CloudSat's Cloudâ€Profiling Radar for Mapping Snowfall Rates Across the Greenland Ice Sheet. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031411.	3.3	10
348	Uncertainty in East Antarctic Firn Thickness Constrained Using a Model Ensemble Approach. Geophysical Research Letters, 2021, 48, e2020GL092060.	4.0	10
349	Mapping the aerodynamic roughness of the Greenland Ice Sheet surface using ICESat-2: evaluation over the K-transect. Cryosphere, 2021, 15, 2601-2621.	3.9	10
350	Local climate, circulation and surface-energy balance of an Antarctic blue-ice area. Annals of Glaciology, 1994, 20, 160-168.	1.4	10
351	Temporal and Spatial Variability in Contemporary Greenland Warming (1958–2020). Journal of Climate, 2022, 35, 2755-2767.	3.2	10
352	Structure and dynamics of the summertime atmospheric boundary layer over the Antarctic Plateau: 2. Heat, moisture, and momentum budgets. Journal of Geophysical Research, 2006, 111, .	3.3	9
353	Comparison of kilometre and subâ€kilometre scale simulations of a foehn wind event over the Larsen C Ice Shelf, Antarctic Peninsula using the Met Office Unified Model (<scp>MetUM</scp>). Quarterly Journal of the Royal Meteorological Society, 2021, 147, 3472-3492.	2.7	9
354	Simulated Internal Storage Buildup, Release, and Runoff from Greenland Ice Sheet at Kangerlussuaq, West Greenland. Arctic, Antarctic, and Alpine Research, 2012, 44, 83-94.	1.1	8
355	Antarctic ice shelf thickness change from multimission lidar mapping. Cryosphere, 2019, 13, 1801-1817.	3.9	8
356	Drivers of ASCAT C band backscatter variability in the dry snow zone of Antarctica. Journal of Glaciology, 2016, 62, 170-184.	2.2	7
357	Downscaling GRACE Predictions of the Crustal Response to the Presentâ€Day Mass Changes in Greenland. Journal of Geophysical Research: Solid Earth, 2019, 124, 5134-5152.	3.4	7
358	Impact of updated radiative transfer scheme in snow and ice in RACMO2.3p3 on the surface mass and energy budget of the Greenland ice sheet. Cryosphere, 2021, 15, 1823-1844.	3.9	7
359	Impact of polar vortex variability on the wintertime low-level climate of east Antarctica: results of a regional climate model. Tellus, Series A: Dynamic Meteorology and Oceanography, 2002, 54, 485-496.	1.7	7
360	Climate variables along a traverse line in Dronning Maud Land, East Antarctica. Journal of Glaciology, 1999, 45, 295-302.	2.2	7

#	Article	IF	CITATIONS
361	The interaction of katabatic winds and the formation of blue-ice areas in East Antarctica. Journal of Glaciology, 1995, 41, 395-407.	2.2	7
362	North Atlantic Cooling is Slowing Down Mass Loss of Icelandic Glaciers. Geophysical Research Letters, 2022, 49, .	4.0	7
363	On the role of Antarctica as heat sink for the global atmosphere. European Physical Journal Special Topics, 2004, 121, 115-124.	0.2	6
364	A Vertical Propeller Eddy-Covariance Method and Its Application to Long-term Monitoring of Surface Turbulent Fluxes on the Greenland Ice Sheet. Boundary-Layer Meteorology, 2020, 176, 441-463.	2.3	6
365	Assessing Global Presentâ€Day Surface Mass Transport and Glacial Isostatic Adjustment From Inversion of Geodetic Observations. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020713.	3.4	6
366	Estimating Ice Discharge at Greenland's Three Largest Outlet Glaciers Using Local Bedrock Uplift. Geophysical Research Letters, 2021, 48, e2021GL094252.	4.0	6
367	Coralline Algae Archive Fjord Surface Water Temperatures in Southwest Greenland. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2617-2626.	3.0	5
368	Separating Longâ€Term and Shortâ€Term Mass Changes of Antarctic Ice Drainage Basins: A Coupled State Space Analysis of Satellite Observations and Model Products. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005966.	2.8	5
369	GPSâ€Observed Elastic Deformation Due to Surface Mass Balance Variability in the Southern Antarctic Peninsula. Geophysical Research Letters, 2022, 49, .	4.0	5
370	Seasonal cycles of nonmethane hydrocarbons and methyl chloride, as derived from firn air from Dronning Maud Land, Antarctica. Journal of Geophysical Research, 2004, 109, .	3.3	4
371	Causes of variability in the summertime Antarctic boundary-layer climate. International Journal of Climatology, 2007, 27, 1735-1751.	3.5	4
372	A New 200‥ear Spatial Reconstruction of West Antarctic Surface Mass Balance. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5282-5295.	3.3	4
373	Observation and simulation of barrier winds at the western margin of the Greenland ice sheet. Quarterly Journal of the Royal Meteorological Society, 1996, 122, 1365-1383.	2.7	4
374	Towards quantifying the contribution of the Antarctic ice sheet to global sea level change. European Physical Journal Special Topics, 2006, 139, 175-183.	0.2	3
375	Toward a Combined Surface Temperature Data Set for the Arctic From the Alongâ€Track Scanning Radiometers. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6718-6736.	3.3	2
376	Methods for Predicting the Likelihood of Safe Fieldwork Conditions in Harsh Environments. Frontiers in Earth Science, 2020, 8, .	1.8	2
377	Ice Sheets and Sea Level: Thinking Outside the Box. Space Sciences Series of ISSI, 2011, , 495-505.	0.0	2
378	Improving surface melt estimation over the Antarctic Ice Sheet using deep learning: a proof of concept over the Larsen Ice Shelf. Cryosphere, 2021, 15, 5639-5658.	3.9	2

#	Article	IF	CITATIONS
379	Sensitivity of Antarctic surface climate to a new spectral snow albedo and radiative transfer scheme in RACMO2.3p3. Cryosphere, 2022, 16, 1071-1089.	3.9	1
380	The IPCC and Antarctica. Antarctic Science, 2005, 17, 305-305.	0.9	0
381	Antarctica and the IPCC. Antarctic Science, 2007, 19, 281-281.	0.9	0
382	Towards a re-assessment of the surface mass balance of the Greenland ice sheet. EPJ Web of Conferences, 2009, 1, 171-176.	0.3	0
383	How Greenland melts. EPJ Web of Conferences, 2010, 9, 137-142.	0.3	0
384	Corrigendum to "Using MODIS land surface temperatures and the Crocus snow model to understand the warm bias of ERA-Interim reanalyses at the surface in Antarctica" published in The Cryosphere, 8, 1361–1373, 2014. Cryosphere, 2014, 8, 1623-1623.	3.9	0
385	Response of the longwave radiation over melting snow and ice to atmospheric warming. Journal of Claciology, 1997, 43, 66-70.	2.2	0
386	Polar Meteorology. Springer Textbooks in Earth Sciences, Geography and Environment, 2021, , 131-159.	0.3	0
387	Mass Balance. Springer Textbooks in Earth Sciences, Geography and Environment, 2021, , 161-184.	0.3	0
388	Kabatic flows over ice sheets and glaciers. Tellus, Series A: Dynamic Meteorology and Oceanography, 2002, 54, 439-439.	1.7	0