List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9413392/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3-(4-{[Benzyl(methyl)amino]methyl}phenyl)-6,7-dimethoxy-2H-2-chromenone (AP2238) Inhibits Both Acetylcholinesterase and Acetylcholinesterase-Induced β-Amyloid Aggregation: A Dual Function Lead for Alzheimer's Disease Therapy§. Journal of Medicinal Chemistry, 2003, 46, 2279-2282.	6.4	259
2	Benzofuran-Based Hybrid Compounds for the Inhibition of Cholinesterase Activity, \hat{l}^2 Amyloid Aggregation, and A \hat{l}^2 Neurotoxicity. Journal of Medicinal Chemistry, 2008, 51, 2883-2886.	6.4	181
3	SAR of 9-Amino-1,2,3,4-tetrahydroacridine-Based Acetylcholinesterase Inhibitors:Â Synthesis, Enzyme Inhibitory Activity, QSAR, and Structure-Based CoMFA of Tacrine Analogues. Journal of Medicinal Chemistry, 2000, 43, 2007-2018.	6.4	142
4	A New Class of Nonsteroidal Aromatase Inhibitors:Â Design and Synthesis of Chromone and Xanthone Derivatives and Inhibition of the P450 Enzymes Aromatase and 17α-Hydroxylase/C17,20-Lyase. Journal of Medicinal Chemistry, 2001, 44, 672-680.	6.4	122
5	Versatility of the Curcumin Scaffold: Discovery of Potent and Balanced Dual BACE-1 and CSK-3β Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 531-544.	6.4	100
6	Acetylcholinesterase inhibitors for potential use in Alzheimer's disease: molecular modeling, synthesis and kinetic evaluation of 11 H -indeno-[1,2- b]-quinolin-10-ylamine derivatives. Bioorganic and Medicinal Chemistry, 2000, 8, 497-506.	3.0	88
7	Lead Optimization Providing a Series of Flavone Derivatives as Potent Nonsteroidal Inhibitors of the Cytochrome P450 Aromatase Enzyme. Journal of Medicinal Chemistry, 2006, 49, 4777-4780.	6.4	88
8	Cholinesterase Inhibitors:Â Xanthostigmine Derivatives Blocking the Acetylcholinesterase-Induced β-Amyloid Aggregation. Journal of Medicinal Chemistry, 2005, 48, 4444-4456.	6.4	86
9	Synthesis and biological activity of some rigid analogues of flavone-8-acetic acid. Bioorganic and Medicinal Chemistry, 2000, 8, 239-246.	3.0	80
10	Extensive SAR and Computational Studies of 3-{4-[(Benzylmethylamino)methyl]phenyl}-6,7-dimethoxy-2 <i>H</i> -2-chromenone (AP2238) Derivatives. Journal of Medicinal Chemistry, 2007, 50, 4250-4254.	6.4	78
11	Acetylcholinesterase Inhibitors:  Synthesis and Structureâ^'Activity Relationships of ï‰-[N-Methyl-N-(3-alkylcarbamoyloxyphenyl)- methyl]aminoalkoxyheteroaryl Derivatives. Journal of Medicinal Chemistry, 1998, 41, 3976-3986.	6.4	73
12	Novel Aldosterone Synthase Inhibitors with Extended Carbocyclic Skeleton by a Combined Ligand-Based and Structure-Based Drug Design Approach. Journal of Medicinal Chemistry, 2008, 51, 6138-6149.	6.4	68
13	Fatty Acid Amide Hydrolase (FAAH), Acetylcholinesterase (AChE), and Butyrylcholinesterase (BuChE): Networked Targets for the Development of Carbamates as Potential Anti-Alzheimer's Disease Agents. Journal of Medicinal Chemistry, 2016, 59, 6387-6406.	6.4	66
14	Acetylcholinesterase Inhibitors:Â SAR and Kinetic Studies on ω-[N-Methyl-N-(3-alkylcarbamoyloxyphenyl)methyl]aminoalkoxyaryl Derivatives. Journal of Medicinal Chemistry, 2001, 44, 3810-3820.	6.4	65
15	Cholinesterase inhibitors: SAR and enzyme inhibitory activity of 3-[ï‰-(benzylmethylamino)alkoxy]xanthen-9-ones. Bioorganic and Medicinal Chemistry, 2007, 15, 575-585.	3.0	65
16	Enantioselective Nonsteroidal Aromatase Inhibitors Identified through a Multidisciplinary Medicinal Chemistry Approach. Journal of Medicinal Chemistry, 2005, 48, 7282-7289.	6.4	64
17	Imidazolylmethylbenzophenones as Highly Potent Aromatase Inhibitors. Journal of Medicinal Chemistry, 2007, 50, 3420-3422.	6.4	64
18	A Computational Assay of Estrogen Receptor α Antagonists Reveals the Key Common Structural Traits of Drugs Effectively Fighting Refractory Breast Cancers. Scientific Reports, 2018, 8, 649.	3.3	57

#	Article	IF	CITATIONS
19	Identification of chalcone-based antileishmanial agents targeting trypanothione reductase. European Journal of Medicinal Chemistry, 2018, 152, 527-541.	5.5	57
20	Hybrid-Based Multi-Target Ligands for the Treatment of Alzheimer's Disease. Current Topics in Medicinal Chemistry, 2011, 11, 2716-2730.	2.1	56
21	2-Arylbenzofuran-based molecules as multipotent Alzheimer's disease modifying agents. European Journal of Medicinal Chemistry, 2012, 58, 519-532.	5.5	56
22	Small-molecule inhibitors/modulators of amyloid-β peptide aggregation and toxicity for the treatment of Alzheimer's disease: a patent review (2010 – 2012). Expert Opinion on Therapeutic Patents, 2013, 23, 581-596.	5.0	56
23	Coumarin derivatives as potential antitumor agents: Growth inhibition, apoptosis induction and multidrug resistance reverting activity. European Journal of Medicinal Chemistry, 2017, 127, 577-585.	5.5	56
24	Novel Highly Potent and Selective Nonsteroidal Aromatase Inhibitors: Synthesis, Biological Evaluation and Structureâ `Activity Relationships Investigation. Journal of Medicinal Chemistry, 2010, 53, 5347-5351.	6.4	52
25	Multidrug resistance reverting activity and antitumor profile of new phenothiazine derivatives. Bioorganic and Medicinal Chemistry, 2008, 16, 6474-6482.	3.0	51
26	Benzophenone-based derivatives: A novel series of potent and selective dual inhibitors of acetylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation. European Journal of Medicinal Chemistry, 2011, 46, 1682-1693.	5.5	43
27	Synthesis and Biological Evaluation of 3-Alkoxy Analogues of Flavone-8-acetic Acid§. Journal of Medicinal Chemistry, 2003, 46, 3662-3669.	6.4	40
28	1,4-Dihydropyridine derivatives as calcium channel modulators: the role of 3-methoxy-flavone moiety. Bioorganic and Medicinal Chemistry, 2005, 13, 3423-3430.	3.0	39
29	Modulation of Cytochromes P450 with Xanthone-Based Molecules: From Aromatase to Aldosterone Synthase and Steroid 11β-Hydroxylase Inhibition. Journal of Medicinal Chemistry, 2013, 56, 1723-1729.	6.4	39
30	The First Dual ChE/FAAH Inhibitors: New Perspectives for Alzheimer's Disease?. ACS Medicinal Chemistry Letters, 2012, 3, 182-186.	2.8	38
31	Multi-target strategy to address Alzheimer's disease: Design, synthesis and biological evaluation of new tacrine-based dimers. European Journal of Medicinal Chemistry, 2011, 46, 4336-4343.	5.5	37
32	Cardiovascular hybrid drugs: new benzazepinone derivatives as bradycardic agents endowed with selective β 1 -Non-competitive antagonism. Bioorganic and Medicinal Chemistry, 2003, 11, 1353-1361.	3.0	33
33	Design, synthesis, and evaluation of benzophenone derivatives as novel acetylcholinesterase inhibitors. European Journal of Medicinal Chemistry, 2009, 44, 1341-1348.	5.5	32
34	Discovery of novel benzofuran-based compounds with neuroprotective and immunomodulatory properties for Alzheimer's disease treatment. European Journal of Medicinal Chemistry, 2019, 178, 243-258.	5.5	32
35	Acetylcholinesterase inhibition by tacrine analogues. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 2599-2602.	2.2	30
36	Recent progress on curcumin-based therapeutics: a patent review (2012-2016). Part II: curcumin derivatives in cancer and neurodegeneration. Expert Opinion on Therapeutic Patents, 2017, 27, 953-965.	5.0	30

#	Article	IF	CITATIONS
37	Recent progress on curcumin-based therapeutics: a patent review (2012-2016). Part I: Curcumin. Expert Opinion on Therapeutic Patents, 2017, 27, 579-590.	5.0	29
38	Synthesis and Antitumor Activity of New Derivatives of Xanthen-9-one-4-acetic Acid. Journal of Medicinal Chemistry, 2002, 45, 4931-4939.	6.4	28
39	Novel Curcumin-Diethyl Fumarate Hybrid as a Dualistic GSK-3β Inhibitor/Nrf2 Inducer for the Treatment of Parkinson's Disease. ACS Chemical Neuroscience, 2020, 11, 2728-2740.	3.5	28
40	Design, Synthesis, and Biological and Crystallographic Evaluation of Novel Inhibitors of <i>Plasmodium falciparum</i> Enoyl-ACP-reductase (<i>Pf</i> Fabl). Journal of Medicinal Chemistry, 2013, 56, 7516-7526.	6.4	27
41	Nonsteroidal Aromatase Inhibitors for the Treatment of Breast Cancer: An Update. Anti-Cancer Agents in Medicinal Chemistry, 2014, 14, 54-65.	1.7	27
42	From AChE to BACE1 inhibitors: The role of the amine on the indanone scaffold. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2804-2808.	2.2	27
43	Structure–Activity Relationships and Binding Mode in the Human Acetylcholinesterase Active Site of Pseudoâ€Irreversible Inhibitors Related to Xanthostigmine. ChemMedChem, 2009, 4, 670-679.	3.2	26
44	Chalcone-based carbamates for Alzheimer's disease treatment. Future Medicinal Chemistry, 2017, 9, 749-764.	2.3	26
45	Design, synthesis and biological profile of new inhibitors of multidrug resistance associated proteins carrying a polycyclic scaffold. European Journal of Medicinal Chemistry, 2015, 92, 471-480.	5.5	24
46	Dual BACE-1/GSK-3β Inhibitors to Combat Alzheimer's Disease: A Focused Review. Current Topics in Medicinal Chemistry, 2018, 17, 3361-3369.	2.1	23
47	Homopterocarpanes as bridged triarylethylene analogues: synthesis and antagonistic effects in human MCF-7 breast cancer cells. Il Farmaco, 2005, 60, 135-147.	0.9	22
48	Exploiting the Chalcone Scaffold to Develop Multifunctional Agents for Alzheimer's Disease. Molecules, 2018, 23, 1902.	3.8	22
49	Fluorinated benzophenone derivatives: Balanced multipotent agents for Alzheimer's disease. European Journal of Medicinal Chemistry, 2014, 78, 157-166.	5.5	21
50	Exploiting the Chromone Scaffold for the Development of Inhibitors of Corticosteroid Biosynthesis. Journal of Medicinal Chemistry, 2016, 59, 2468-2477.	6.4	21
51	Multitarget Strategy to Address Alzheimer's Disease: Design, Synthesis, Biological Evaluation, and Computational Studies of Coumarinâ€Based Derivatives. ChemMedChem, 2016, 11, 1296-1308.	3.2	20
52	Reconsidering Aromatase for Breast Cancer Treatment: New Roles for an Old Target. Molecules, 2020, 25, 5351.	3.8	19
53	Emerging Targets in Neurodegeneration: New Opportunities for Alzheimer's Disease Treatment?. Current Topics in Medicinal Chemistry, 2013, 13, 1879-1904.	2.1	18
54	Polycyclic maleimide-based derivatives as first dual modulators of neuronal calcium channels and GSK-31² for Alzheimer's disease treatment. European Journal of Medicinal Chemistry, 2019, 163, 394-402.	5.5	18

#	Article	IF	CITATIONS
55	Targeting Orthosteric and Allosteric Pockets of Aromatase via Dual-Mode Novel Azole Inhibitors. ACS Medicinal Chemistry Letters, 2020, 11, 732-739.	2.8	18
56	ldentification of a new tamoxifen-xanthene hybrid as pro-apoptotic anticancer agent. Bioorganic Chemistry, 2019, 86, 538-549.	4.1	17
57	New Potent P-Glycoprotein Inhibitors Carrying a Polycyclic Scaffold. Journal of Medicinal Chemistry, 2006, 49, 3049-3051.	6.4	16
58	From Nonsteroidal Aromatase Inhibitors to Multifunctional Drug Candidates: Classic and Innovative Strategies for the Treatment of Breast Cancer. Current Topics in Medicinal Chemistry, 2008, 8, 869-887.	2.1	15
59	Anthracene Based Compounds as New L-type Ca ²⁺ Channel Blockers: Design, Synthesis, and Full Biological Profile. Journal of Medicinal Chemistry, 2009, 52, 1259-1262.	6.4	14
60	Naturally Inspired Molecules as Multifunctional Agents for Alzheimer's Disease Treatment. Molecules, 2016, 21, 643.	3.8	14
61	Curcumin-1,2,3-Triazole Conjugation for Targeting the Cancer Apoptosis Machinery. Molecules, 2020, 25, 3066.	3.8	14
62	A Simple One-Pot Synthesis of Isoflavanones. Synthetic Communications, 1999, 29, 3895-3899.	2.1	12
63	Synthesis and Structureâ~'Activity Relationships of Cetiedil Analogues as Blockers of the Ca2+-Activated K+ Permeability of Erythrocytes. Journal of Medicinal Chemistry, 2001, 44, 3244-3253.	6.4	12
64	New derivatives of xanthenone-4-acetic acid: Synthesis, pharmacological profile and effect on TNF-α and NO production by human immune cells. Bioorganic and Medicinal Chemistry, 2006, 14, 4101-4109.	3.0	12
65	Design of Multifunctional Compounds for Cardiovascular Disease: From Natural Scaffolds to "Classical―Multitarget Approach. Current Medicinal Chemistry, 2013, 20, 1759-1782.	2.4	12
66	Functionalization of the Chalcone Scaffold for the Discovery of Novel Lead Compounds Targeting Fungal Infections. Molecules, 2019, 24, 372.	3.8	12
67	Balanced dual acting compounds targeting aromatase and estrogen receptor α as an emerging therapeutic opportunity to counteract estrogen responsive breast cancer. European Journal of Medicinal Chemistry, 2021, 224, 113733.	5.5	11
68	Benzophenones as xanthone-open model CYP11B1 inhibitors potentially useful for promoting wound healing. Bioorganic Chemistry, 2019, 86, 401-409.	4.1	10
69	Flavonoid-Inspired Vascular Disrupting Agents: Exploring Flavone-8-Acetic Acid and Derivatives in the New Century. Molecules, 2021, 26, 4228.	3.8	10
70	Coumarin 1,4-Dihydropyridine Derivatives. Bioorganic and Medicinal Chemistry, 1998, 6, 803-810.	3.0	9
71	Selective cardiodepressant activity of fluodipine, a fluorenone-1,4-dihydropyridine derivative. European Journal of Pharmacology, 1998, 359, 161-170.	3.5	8
72	Targeting the Bacterial Membrane with a New Polycyclic Privileged Structure: A Powerful Tool To Face <i>Staphylococcus aureus</i> Infections. ACS Infectious Diseases, 2019, 5, 1524-1534.	3.8	8

#	Article	IF	CITATIONS
73	New Coumarin Derivatives as Cholinergic and Cannabinoid System Modulators. Molecules, 2021, 26, 3254.	3.8	8
74	Improved eradication efficacy of a combination of newly identified antimicrobial agents in C.Âalbicans and S.Âaureus mixed-species biofilm. Research in Microbiology, 2021, 172, 103873.	2.1	8
75	Drifting of heme-coordinating group in imidazolylmethylxanthones leading to improved selective inhibition of CYP11B1. European Journal of Medicinal Chemistry, 2017, 139, 60-67.	5.5	7
76	Polycyclic Maleimide-based Scaffold as New Privileged Structure for Navigating the Cannabinoid System Opportunities. ACS Medicinal Chemistry Letters, 2019, 10, 596-600.	2.8	6
77	Targeting Steroidogenic Cytochromes P450 (CYPs) with 6‣ubstituted 1â€Imidazolylmethylxanthones. ChemMedChem, 2016, 11, 1770-1777.	3.2	5
78	Multifaceted activity of polyciclic MDR revertant agents in drug-resistant leukemic cells: Role of the spacer. Bioorganic Chemistry, 2021, 106, 104460.	4.1	5
79	1,4-Dihydropyridines bearing a pharmacophoric fragment of lidoflazine. Bioorganic and Medicinal Chemistry, 1996, 4, 1629-1635.	3.0	4
80	Cardiovascular Profile of Xanthone-Based 1,4 Dihydropyridines Bearing a Lidoflazine Pharmacophore Fragment. Molecules, 2018, 23, 3088.	3.8	4
81	Tackling Alzheimer's Disease with Existing Drugs: A Promising Strategy for Bypassing Obstacles. Current Medicinal Chemistry, 2021, 28, 2305-2327.	2.4	4
82	The ability of coumarin-, flavanon- and flavonol-analogues of flavone acetic acid to stimulate human monocytes. Oncology Reports, 2008, , .	2.6	3
83	Mono- or di-fluorinated analogues of flavone-8-acetic acid: synthesis and in vitro biological activity. Anticancer Research, 2005, 25, 1179-85.	1.1	3
84	Synthesis and Bone Resorption Effect of Alkoxy-Substituted Xanthones. Archiv Der Pharmazie, 1997, 330, 233-234.	4.1	2
85	Antimicrotubular and cytotoxic activity of geiparvarin analogues, alone and in combination with paclitaxel. Cell Biochemistry and Function, 2001, 19, 181-189.	2.9	2
86	Interplay Between Endocannabinoid System and Neurodegeneration: Focus on Polypharmacology. Current Medicinal Chemistry, 2021, 28, .	2.4	2
87	The ability of coumarin-, flavanon- and flavonol-analogues of flavone acetic acid to stimulate human monocytes. Oncology Reports, 2008, 19, 187-96.	2.6	1
88	Natural-like Chalcones with Antitumor Activity on Human MG63 Osteosarcoma Cells. Molecules, 2022, 27, 3751.	3.8	1
89	Editorial (Thematic Issue: New Approaches to the Treatment of Alzheimer's Disease). Current Topics in Medicinal Chemistry, 2013, 13, 1743-1744.	2.1	0