
Yefeng Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9413344/publications.pdf Version: 2024-02-01

VEEENC FENC

#	Article	IF	CITATIONS
1	Exfoliated graphite nanosheets wrapping on MoO2–SnO2 nanoparticles as a high performance anode material for lithium ion batteries. Journal of Power Sources, 2020, 467, 228357.	4.0	52
2	Fluorine-doped porous SnO2@C nanosheets as a high performance anode material for lithium ion batteries. Journal of Alloys and Compounds, 2020, 843, 156085.	2.8	51
3	Mo-Doped SnO ₂ Nanoparticles Embedded in Ultrathin Graphite Nanosheets as a High-Reversible-Capacity, Superior-Rate, and Long-Cycle-Life Anode Material for Lithium-Ion Batteries. Langmuir, 2020, 36, 9276-9283.	1.6	22
4	SnO2-MoO3 nanoparticles anchored in carbon nanotubes as a large-capacity, high-rate, and long-lifetime anode for lithium-ion batteries. Ceramics International, 2021, 47, 27022-27031.	2.3	14
5	Synthesis of SnO2@MnO2@graphite nanosheet with high reversibility and stable structure as a high-performance anode material for lithium-ion batteries. Ceramics International, 2021, 47, 33405-33412.	2.3	13
6	Mo-doped 3D carbon@Sn as high performance anode material for lithium ion batteries. Chemical Physics Letters, 2020, 756, 137832.	1.2	9
7	Synthesis of a mesoporous Sn@C composite as a high-performance anode for lithium ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 125069.	2.3	9
8	SnO2-Al2O3-graphite nanosheets as a long-life and high-rate anode material for lithium-ion batteries. Chemical Physics Letters, 2020, 749, 137456.	1.2	7
9	SnO2-Co3O4-graphite nanosheets with stable structure, high reversible capacity, and long life as anode material for lithium-ion batteries. Ionics, 2021, 27, 4167-4175.	1.2	7
10	Stabilizing the nanostructure of Pre-lithiated LiF nanoparticles modified SnO2@graphite nanosheets as a high performance anode material for lithium ions batteries. Ceramics International, 2021, 47, 22776-22785.	2.3	7
11	SnO2-Fe2O3 embedded in graphene nanosheets enhances conductivity and stable structure as a high-performance anode material for lithium-ion batteries. Ionics, 2022, 28, 2213-2226.	1.2	6
12	Novel Tunable Green-Red Luminescence in Mn2+ Doped Ca9Tb(PO4)7 Phosphors Based on the Mn2+ Regulation and Energy Transfer. Coatings, 2020, 10, 952.	1.2	5
13	Exfoliated Graphite Nanosheets Coating on Nano-grained SnO2/Li4Ti5O12 as a High-Performance Anode Material for Lithium-Ion Batteries. Langmuir, 2020, 36, 14666-14675.	1.6	5
14	Superior electrochemical performance of sheet-stacked SnO2@ZrO2/C composite as anode material for lithium-ion batteries. Chemical Physics Letters, 2021, 763, 138220.	1.2	5
15	A simple fabrication for nanoscale SnO2-Fe2O3-C lithium-ion battery anode material with tubular network structure. Ionics, 2022, 28, 2185-2196.	1.2	3
16	Fe ₃ C Encapsulated in Three-Dimensional Porous Cellulose Acetate as a High-Performance Anode for Potassium Ion Batteries. Energy & Fuels, 2022, 36, 1063-1071.	2.5	2
17	Preparation of SnO2-Nb-C composite by hydrothermal and ball milling processes for high-performance lithium-ion batteries. Chemical Physics Letters, 2021, , 139292.	1.2	1