
Andrey E Ryabinin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9413343/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Manifestations of domination: Assessments of social dominance in rodents. Genes, Brain and Behavior, 2022, 21, e12731.	1.1	22
2	Barriers and Breakthroughs in Targeting the Oxytocin System to Treat Alcohol Use Disorder. Frontiers in Psychiatry, 2022, 13, 842609.	1.3	3
3	Deepening the understanding of social bonding and dynamics of social interactions. Genes, Brain and Behavior, 2022, 21, e12804.	1.1	1
4	Focus on autism and other neurodevelopmental disorders. Genes, Brain and Behavior, 2022, 21, e12789.	1.1	3
5	Sensitivity and Resilience to Predator Stress-Enhanced Ethanol Drinking Is Associated With Sex-Dependent Differences in Stress-Regulating Systems. Frontiers in Behavioral Neuroscience, 2022, 16, .	1.0	8
6	From basic social neurobiology to better understanding of neurodevelopmental disorders. Genes, Brain and Behavior, 2022, 21, .	1.1	0
7	Oxytocin Receptors in the Mouse Centrally-projecting Edinger-Westphal Nucleus and their Potential Functional Significance for Thermoregulation. Neuroscience, 2022, 498, 93-104.	1.1	3
8	Assessing effects of oxytocin on alcohol consumption in socially housed prairie voles using radio frequency tracking. Addiction Biology, 2021, 26, e12893.	1.4	13
9	Temporal analysis of individual ethanol consumption in socially housed mice and the effects of oxytocin. Psychopharmacology, 2021, 238, 899-911.	1.5	12
10	Social Housing Leads to Increased Ethanol Intake in Male Mice Housed in Environmentally Enriched Cages. Frontiers in Behavioral Neuroscience, 2021, 15, 695409.	1.0	8
11	Alcohol and oxytocin: Scrutinizing the relationship. Neuroscience and Biobehavioral Reviews, 2021, 127, 852-864.	2.9	7
12	Vesicular glutamate transporter 2-containing neurons of the centrally-projecting Edinger-Westphal nucleus regulate alcohol drinking and body temperature. Neuropharmacology, 2021, 200, 108795.	2.0	2
13	Effects of pharmacological inhibition of the centrally-projecting Edinger-Westphal nucleus on ethanol-induced conditioned place preference and body temperature. Alcohol, 2020, 87, 121-131.	0.8	4
14	Effects of Housing Conditions and Circadian Time on Baseline c-Fos Immunoreactivity in C57BL/6J Mice. Neuroscience, 2020, 431, 143-151.	1.1	9
15	Involvement of Centrally Projecting Edinger–Westphal Nucleus Neuropeptides in Actions of Addictive Drugs. Brain Sciences, 2020, 10, 67.	1.1	15
16	Differential sensitivity of alcohol drinking and partner preference to a CRFR1 antagonist in prairie voles and mice. Hormones and Behavior, 2020, 120, 104676.	1.0	2
17	The Prairie Vole Model of Pair-Bonding and Its Sensitivity to Addictive Substances. Frontiers in Psychology, 2019, 10, 2477.	1.1	11
18	From Pleasure to Pain, and Back Again: The Intricate Relationship Between Alcohol and Nociception. Alcohol and Alcoholism, 2019, 54, 625-638.	0.9	34

#	Article	IF	CITATIONS
19	Effects of Alcohol Consumption on Pair Bond Maintenance and Potential Neural Substrates in Female Prairie Voles. Alcohol and Alcoholism, 2019, 54, 353-360.	0.9	10
20	Social transfer of alcohol withdrawal-induced hyperalgesia in female prairie voles. Social Neuroscience, 2018, 13, 710-717.	0.7	16
21	Assessing Social Alcohol Drinking in Rodent Models: Are We There Yet?. International Review of Neurobiology, 2018, 140, 33-51.	0.9	10
22	Control of chronic excessive alcohol drinking by genetic manipulation of the Edinger–Westphal nucleus urocortin-1 neuropeptide system. Translational Psychiatry, 2017, 7, e1021-e1021.	2.4	22
23	Sweetened ethanol drinking during social isolation: enhanced intake, resistance to genetic heterogeneity and the emergence of a distinctive drinking pattern in adolescent mice. Genes, Brain and Behavior, 2017, 16, 369-383.	1.1	11
24	Alcohol's Effects on Pair-Bond Maintenance in Male Prairie Voles. Frontiers in Psychiatry, 2017, 8, 226.	1.3	16
25	Contribution of Urocortin to the Development of Excessive Drinking. International Review of Neurobiology, 2017, 136, 275-291.	0.9	7
26	Action of CRF/Urocortin Peptides. , 2017, , 401-415.		1
27	Anterior Cingulate Cortex Contributes to Alcohol Withdrawal- Induced and Socially Transferred Hyperalgesia. ENeuro, 2017, 4, ENEURO.0087-17.2017.	0.9	36
28	Methamphetamine Consumption Inhibits Pair Bonding and Hypothalamic Oxytocin in Prairie Voles. PLoS ONE, 2016, 11, e0158178.	1.1	9
29	Prairie Voles as a Model to Screen Medications for the Treatment of Alcoholism and Addictions. International Review of Neurobiology, 2016, 126, 403-421.	0.9	8
30	Alcohol Suppresses Tonic GABA _A Receptor Currents in Cerebellar Granule Cells in the Prairie Vole: A Neural Signature of Highâ€Alcoholâ€Consuming Genotypes. Alcoholism: Clinical and Experimental Research, 2016, 40, 1617-1626.	1.4	7
31	Social transfer of pain in mice. Science Advances, 2016, 2, e1600855.	4.7	108
32	Morphine-induced conditioned place preference in rhesus monkeys: Resistance to inactivation of insula and extinction. Neurobiology of Learning and Memory, 2016, 131, 192-200.	1.0	13
33	Effects of isoflurane and ethanol administration on c-Fos immunoreactivity in mice. Neuroscience, 2016, 316, 337-343.	1.1	18
34	Neuropeptide Y response to alcohol is altered in nucleus accumbens of mice selectively bred for drinking to intoxication. Behavioural Brain Research, 2016, 302, 160-170.	1.2	11
35	The Corticotropin Releasing Factor System and Alcohol Consumption. , 2016, , 201-212.		0
36	Increased Alcohol Consumption in Urocortin 3 Knockout Mice Is Unaffected by Chronic Inflammatory Pain. Alcohol and Alcoholism, 2015, 50, 132-139.	0.9	13

#	Article	IF	CITATIONS
37	The stress response neuropeptide <scp>CRF</scp> increases amyloidâ€Î² production by regulating γâ€secretase activity. EMBO Journal, 2015, 34, 1674-1686.	3.5	47
38	Differential effects of ghrelin antagonists on alcohol drinking and reinforcement in mouse and rat models of alcohol dependence. Neuropharmacology, 2015, 97, 182-193.	2.0	62
39	The bed nucleus of the stria terminalis regulates ethanol-seeking behavior in mice. Neuropharmacology, 2015, 99, 627-638.	2.0	42
40	Drinking Songs: Alcohol Effects on Learned Song of Zebra Finches. PLoS ONE, 2014, 9, e115427.	1.1	16
41	Establishment of stable dominance interactions in prairie vole peers: Relationships with alcohol drinking and activation of the paraventricular nucleus of the hypothalamus. Social Neuroscience, 2014, 9, 484-494.	0.7	16
42	The Effects of Ghrelin Antagonists [<scp>D</scp> â€ <scp>L</scp> ys ³]â€ <scp>GHRP</scp> â€6 or <scp>JMV</scp> 2959 on Ethanol, Water, and Food Intake in C57BL/6J Mice. Alcoholism: Clinical and Experimental Research, 2014, 38, 2436-2444.	1.4	59
43	Drinking alcohol has sex-dependent effects on pair bond formation in prairie voles. Proceedings of the United States of America, 2014, 111, 6052-6057.	3.3	25
44	Social partners prevent alcohol relapse behavior in prairie voles. Psychoneuroendocrinology, 2014, 39, 152-157.	1.3	24
45	Comparative distribution of central neuropeptide Y (NPY) in the prairie (Microtus ochrogaster) and meadow (M. pennsylvanicus) vole. Peptides, 2013, 40, 22-29.	1.2	10
46	Inhibition of VTA neurons activates the centrally projecting Edinger–Westphal nucleus: Evidence of a stress–reward link?. Journal of Chemical Neuroanatomy, 2013, 54, 57-61.	1.0	16
47	Ghrelin Increases GABAergic Transmission and Interacts with Ethanol Actions in the Rat Central Nucleus of the Amygdala. Neuropsychopharmacology, 2013, 38, 364-375.	2.8	59
48	CRF1 Receptor Signaling Regulates Food and Fluid Intake in the Drinking-in-the-Dark Model of Binge Alcohol Consumption. Alcoholism: Clinical and Experimental Research, 2013, 37, 1161-1170.	1.4	48
49	Identification of subpopulations of prairie voles differentially susceptible to peer influence to decrease high alcohol intake. Frontiers in Pharmacology, 2013, 4, 84.	1.6	14
50	The CRF system and social behavior: a review. Frontiers in Neuroscience, 2013, 7, 92.	1.4	83
51	Corticotropin-releasing factor: innocent until proven guilty. Nature Reviews Neuroscience, 2012, 13, 70-70.	4.9	10
52	Role of Corticotropin-Releasing Factor and Corticosterone in Behavioral Sensitization to Ethanol. Journal of Pharmacology and Experimental Therapeutics, 2012, 341, 455-463.	1.3	19
53	Activation and role of the medial prefrontal cortex (mPFC) in extinction of ethanol-induced associative learning in mice. Neurobiology of Learning and Memory, 2012, 97, 37-46.	1.0	19
54	Stress-Related Neuropeptides and Addictive Behaviors: Beyond the Usual Suspects. Neuron, 2012, 76, 192-208.	3.8	99

#	Article	IF	CITATIONS
55	Love and addiction: the devil is in the differences: a commentary on "The behavioral, anatomical and pharmacological parallels between social attachment, love and addiction.― Psychopharmacology, 2012, 224, 27-29.	1.5	10
56	Social housing and alcohol drinking in male-female pairs of prairie voles (Microtus ochrogaster). Psychopharmacology, 2012, 224, 121-132.	1.5	31
57	Discrimination of ethanol–nicotine drug mixtures in mice: dual interactive mechanisms of overshadowing and potentiation. Psychopharmacology, 2012, 224, 537-548.	1.5	17
58	Increasing Histone Acetylation in the Hippocampus-Infralimbic Network Enhances Fear Extinction. Biological Psychiatry, 2012, 72, 25-33.	0.7	148
59	Corticotropinâ€Releasing Factor Acting on Corticotropinâ€Releasing Factor Receptor Type 1 is Critical for Binge Alcohol Drinking in Mice. Alcoholism: Clinical and Experimental Research, 2012, 36, 369-376.	1.4	53
60	Urocortins: CRF's siblings and their potential role in anxiety, depression and alcohol drinking behavior. Alcohol, 2012, 46, 349-357.	0.8	53
61	Dissociation of corticotropin-releasing factor receptor subtype involvement in sensitivity to locomotor effects of methamphetamine and cocaine. Psychopharmacology, 2012, 219, 1055-1063.	1.5	21
62	The Role of Early Life Experience and Species Differences in Alcohol Intake in Microtine Rodents. PLoS ONE, 2012, 7, e39753.	1.1	8
63	The Neocortical Column. Frontiers in Neuroanatomy, 2012, 6, 5.	0.9	34
64	Prairie voles as a novel model of socially facilitated excessive drinking. Addiction Biology, 2011, 16, 92-107.	1.4	62
65	Alcohol Intake in Prairie Voles is Influenced by the Drinking Level of a Peer. Alcoholism: Clinical and Experimental Research, 2011, 35, 1884-1890.	1.4	42
66	Dissection of corticotropin-releasing factor system involvement in locomotor sensitivity to methamphetamine. Genes, Brain and Behavior, 2011, 10, 78-89.	1.1	27
67	The Edingerâ€Westphal nucleus: A historical, structural, and functional perspective on a dichotomous terminology. Journal of Comparative Neurology, 2011, 519, 1413-1434.	0.9	168
68	Urocortin-1 within the Centrally-Projecting Edinger-Westphal Nucleus Is Critical for Ethanol Preference. PLoS ONE, 2011, 6, e26997.	1.1	35
69	Postnatal developmental profile of urocortin 1 and cocaine- and amphetamine-regulated transcript in the perioculomotor region of C57BL/6J mice. Brain Research, 2010, 1319, 33-43.	1.1	9
70	Ghrelin Receptor Antagonism Decreases Alcohol Consumption and Activation of Perioculomotor Urocortin ontaining Neurons. Alcoholism: Clinical and Experimental Research, 2010, 34, 1525-1534.	1.4	105
71	Biological Contribution to Social Influences on Alcohol Drinking: Evidence from Animal Models. International Journal of Environmental Research and Public Health, 2010, 7, 473-493.	1.2	45
72	Post-retrieval disruption of a cocaine conditioned place preference by systemic and intrabasolateral amygdala l² ₂ - and l± ₁ -adrenergic antagonists. Learning and Memory, 2009, 16, 777-789.	0.5	69

#	Article	IF	CITATIONS
73	Increased Perioculomotor Urocortin 1 Immunoreactivity in Genetically Selected Alcohol Preferring Rats. Alcoholism: Clinical and Experimental Research, 2009, 33, 1956-1965.	1.4	29
74	Stress-related neuropeptides and alcoholism: CRH, NPY, and beyond. Alcohol, 2009, 43, 491-498.	0.8	52
75	Differential sensitivity of the perioculomotor urocortin-containing neurons to ethanol, psychostimulants and stress in mice and rats. Neuroscience, 2009, 160, 115-125.	1.1	30
76	Comparison of the distributions of urocortinâ€containing and cholinergic neurons in the perioculomotor midbrain of the cat and macaque. Journal of Comparative Neurology, 2008, 507, 1300-1316.	0.9	60
77	Urocortin 1 microinjection into the mouse lateral septum regulates the acquisition and expression of alcohol consumption. Neuroscience, 2008, 151, 780-790.	1.1	45
78	Corticotropin-releasing factor-1 receptor involvement in behavioral neuroadaptation to ethanol: A urocortin ₁ -independent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9070-9075.	3.3	62
79	CRF receptors in the nucleus accumbens modulate partner preference in prairie voles. Hormones and Behavior, 2007, 51, 508-515.	1.0	81
80	Differences in the urocortin 1 system between long-sleep and short-sleep mice. Genes, Brain and Behavior, 2007, 7, 070629195945001-???.	1.1	6
81	FOS expression induced by an ethanol-paired conditioned stimulus. Pharmacology Biochemistry and Behavior, 2007, 87, 208-221.	1.3	29
82	The Nonâ€Preganglionic Edingerâ€Westphal Nucleus is differentially responsive to psychostimulants. FASEB Journal, 2007, 21, A598.	0.2	1
83	Urocortin 1 in the dorsal raphe regulates food and fluid consumption, but not ethanol preference in C57BL/6J mice. Neuroscience, 2006, 137, 1439-1445.	1.1	36
84	The urocortin 1 neurocircuit: Ethanol-sensitivity and potential involvement in alcohol consumption. Brain Research Reviews, 2006, 52, 368-380.	9.1	67
85	Distribution of Corticotropin-Releasing Factor and Urocortin 1 in the Vole Brain. Brain, Behavior and Evolution, 2006, 68, 229-240.	0.9	40
86	Transcriptional Signatures of Cellular Plasticity in Mice Lacking the Â1 Subunit of GABAA Receptors. Journal of Neuroscience, 2006, 26, 5673-5683.	1.7	54
87	Lesions of the Edinger-Westphal nucleus alter food and water consumption Behavioral Neuroscience, 2005, 119, 1235-1243.	0.6	50
88	Patterns of Brain Activation Associated With Contextual Conditioning to Methamphetamine in Mice Behavioral Neuroscience, 2005, 119, 759-771.	0.6	43
89	Ataxia and c-Fos Expression in Mice Drinking Ethanol in a Limited Access Session. Alcoholism: Clinical and Experimental Research, 2005, 29, 1419-1426.	1.4	56
90	Brain Region-Specific Regulation of Urocortin 1 Innervation and Corticotropin-Releasing Factor Receptor Type 2 Binding by Ethanol Exposure. Alcoholism: Clinical and Experimental Research, 2005, 29, 1610-1620.	1.4	22

#	Article	IF	CITATIONS
91	Expression of c-Fos in the mouse Edinger–Westphal nucleus following ethanol administration is not secondary to hypothermia or stress. Brain Research, 2005, 1063, 132-139.	1.1	25
92	Urocortin 1 expression in five pairs of rat lines selectively bred for differences in alcohol drinking. Psychopharmacology, 2005, 181, 511-517.	1.5	35
93	Urocortin 1 distribution in mouse brain is strain-dependent. Neuroscience, 2005, 132, 729-740.	1.1	78
94	Ethanol versus lipopolysaccharide-induced hypothermia: Involvement of urocortin. Neuroscience, 2005, 133, 1021-1028.	1.1	24
95	Urocortin 1-containing neurons in the human Edinger-Westphal nucleus. Neuroscience, 2005, 134, 1317-1323.	1.1	71
96	Lesions of the Edinger-Westphal nucleus in C57BL/6J mice disrupt ethanol-induced hypothermia and ethanol consumption. European Journal of Neuroscience, 2004, 20, 1613-1623.	1.2	63
97	Subregion-specific differences in hippocampal activity between Delay and Trace fear conditioning: an immunohistochemical analysis. Brain Research, 2004, 995, 55-65.	1.1	39
98	High alcohol/sucrose consumption during dark circadian phase in C57BL/6J mice: involvement of hippocampus, lateral septum and urocortin-positive cells of the Edinger-Westphal nucleus. Psychopharmacology, 2003, 165, 296-305.	1.5	80
99	Identification of temperature-sensitive neural circuits in mice using c-Fos expression mapping. Brain Research, 2003, 960, 157-164.	1.1	62
100	Alcohol-induced memory impairment in trace fear conditioning: A hippocampus-specific effect. Hippocampus, 2003, 13, 305-315.	0.9	59
101	New Neuronal Networks Involved in Ethanol Reinforcement. Alcoholism: Clinical and Experimental Research, 2003, 27, 209-219.	1.4	21
102	The Edinger-Westphal–Lateral Septum Urocortin Pathway and Its Relationship to Alcohol Consumption. Journal of Neuroscience, 2003, 23, 2477-2487.	1.7	96
103	Alcohol-Induced c-Fos Expression in the Edinger-Westphal Nucleus: Pharmacological and Signal Transduction Mechanisms. Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 516-524.	1.3	82
104	Strain differences in urocortin expression in the Edinger–Westphal nucleus and its relation to alcohol-induced hypothermia. Neuroscience, 2002, 113, 421-434.	1.1	65
105	Effects of acute alcohol administration on object recognition learning in C57BL/6J mice. Pharmacology Biochemistry and Behavior, 2002, 71, 307-312.	1.3	51
106	The Corticotropin-Releasing Factor/Urocortin System and Alcohol. Alcoholism: Clinical and Experimental Research, 2002, 26, 714-722.	1.4	33
107	Interactive effects of nicotine and alcohol co-administration on expression of inducible transcription factors in mouse brain. Neuroscience, 2001, 103, 941-954.	1.1	39
108	Expression of the c-fos gene in the mouse brain during the acquisition of defensive behavior habits. Neuroscience and Behavioral Physiology, 2001, 31, 139-143.	0.2	7

#	Article	IF	CITATIONS
109	Expression of c-Fos in Alko Alcohol Rats Responding for Ethanol in an Operant Paradigm. Alcoholism: Clinical and Experimental Research, 2001, 25, 704-710.	1.4	52
110	ITF expression in mouse brain during acquisition of alcohol self-administration. Brain Research, 2001, 890, 192-195.	1.1	41
111	Expression of c-Fos in Alko Alcohol Rats Responding for Ethanol in an Operant Paradigm. Alcoholism: Clinical and Experimental Research, 2001, 25, 704-710.	1.4	2
112	Cocaine- and alcohol-mediated expression of inducible transcription factors is blocked by pentobarbital anesthesia. Brain Research, 2000, 877, 251-261.	1.1	32
113	ITF mapping after drugs of abuse: pharmacological versus perceptional effects. Acta Neurobiologiae Experimentalis, 2000, 60, 547-55.	0.4	8
114	Selective Effects of Alcohol Drinking on Restraint-Induced Expression of Immediate Early Genes in Mouse Brain. Alcoholism: Clinical and Experimental Research, 1999, 23, 1272-1280.	1.4	35
115	Alcohol drinking produces brain region-selective changes in expression of inducible transcription factors. Brain Research, 1999, 847, 157-165.	1.1	129
116	Different Levels of Fos Immunoreactivity After Repeated Handling and Injection Stress in Two Inbred Strains of Mice. Pharmacology Biochemistry and Behavior, 1999, 63, 143-151.	1.3	142
117	Repeated Alcohol Administration Differentially Affects c-Fos and FosB Protein Immunoreactivity in DBA/2J Mice. Alcoholism: Clinical and Experimental Research, 1998, 22, 1646-1654.	1.4	48
118	Neonatal alcohol exposure reduces NMDA induced Ca2+ signaling in developing cerebellar granule neurons. Brain Research, 1998, 793, 12-20.	1.1	23
119	Role of hippocampus in alcohol-induced memory impairment: implications from behavioral and immediate early gene studies. Psychopharmacology, 1998, 139, 34-43.	1.5	115
120	Differential sensitivity of c-Fos expression in hippocampus and other brain regions to moderate and low doses of alcohol. Molecular Psychiatry, 1997, 2, 32-43.	4.1	181
121	Hippocampal-dependent learning and experience-dependent activation of the hippocampus are preferentially disrupted by ethanol. Neuroscience, 1996, 74, 313-322.	1.1	120
122	Differential regulation of genes encoding synaptic proteins by members of the Brn-3 subfamily of POU transcription factors. Molecular Brain Research, 1996, 43, 279-285.	2.5	28
123	Exposure of Neonatal Rats to Alcohol by Vapor Inhalation Demonstrates Specificity of Microcephaly and Purkinje Cell Loss But Not Astrogliosis. Alcoholism: Clinical and Experimental Research, 1995, 19, 784-791.	1.4	46
124	Immediate upstream promoter regions required for neurospecific expression of SNAP-25. Journal of Molecular Neuroscience, 1995, 6, 201-210.	1.1	17
125	Alcohol selectively attenuates stress-induced c-fos expression in rat hippocampus. Journal of Neuroscience, 1995, 15, 721-730.	1.7	94
126	Differential expression of SNAP-25 protein isoforms during divergent vesicle fusion events of neural development Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 1510-1514.	3.3	214

#	Article	IF	CITATIONS
127	Induction and habituation of immediate early gene expression in rat brain by acute and repeated restraint stress. Journal of Neuroscience, 1994, 14, 5929-5938.	1.7	331