A Chaiyasat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9412823/publications.pdf Version: 2024-02-01

Δ CΗΛΙΥΛΟΛΤ

#	Article	IF	CITATIONS
1	Preparation of Polymer Blends between Poly(Lactic Acid) and Poly(Butylene adipate-co-terephthalate) and Biodegradable Polymers as Compatibilizers. Energy Procedia, 2013, 34, 549-554.	1.8	51
2	Emulsifier-Free, Organotellurium-Mediated Living Radical Emulsion Polymerization of Styrene: Polymerization Loci. Macromolecules, 2010, 43, 7465-7471.	2.2	46
3	Preparation of poly(divinylbenzene) microencapsulated octadecane by microsuspension polymerization: oil droplets generated by phase inversion emulsification. RSC Advances, 2013, 3, 10202.	1.7	45
4	Do encapsulated heat storage materials really retain their original thermal properties?. Physical Chemistry Chemical Physics, 2015, 17, 1053-1059.	1.3	42
5	Innovative synthesis of high performance poly(methyl methacrylate) microcapsules with encapsulated heat storage material by microsuspension iodine transfer polymerization (ms ITP). Solar Energy Materials and Solar Cells, 2016, 157, 996-1003.	3.0	36
6	Emulsifierâ€Free, Organotelluriumâ€Mediated Living Radical Emulsion Polymerization of Styrene. Macromolecular Symposia, 2010, 288, 25-32.	0.4	28
7	Preparation of Poly (methyl methacrylate) Microcapsule with Encapsulated Jasmine Oil. Energy Procedia, 2014, 56, 181-186.	1.8	27
8	Poly(divinylbenzene) Microencapsulated Octadecane for Use as a Heat Storage Material: Influences of Microcapsule Size and Monomer/Octadecane Ratio. Polymer-Plastics Technology and Engineering, 2012, 51, 1167-1172.	1.9	26
9	Synthesis of micrometer-sized poly(methyl methacrylate) particles by microsuspension iodine transfer polymerization (ms ITP). RSC Advances, 2016, 6, 95062-95066.	1.7	24
10	Incorporation of nonionic emulsifier inside methacrylic polymer particles in emulsion polymerization. Colloid and Polymer Science, 2007, 285, 557-562.	1.0	22
11	Encapsulation of octadecane in poly(divinylbenzene- <i>co</i> -methyl methacrylate) using phase inversion emulsification for droplet generation. Journal of Macromolecular Science - Pure and Applied Chemistry, 2016, 53, 11-17.	1.2	21
12	Preparation of polydivinylbenzene/natural rubber capsule encapsulating octadecane: Influence of natural rubber molecular weight and content. EXPRESS Polymer Letters, 2012, 6, 70-77.	1.1	20
13	Preparation of stable poly(methacrylic acid)-b-polystyrene emulsion by emulsifier-free emulsion iodine transfer polymerization (emulsion ITP) with self-assembly nucleation. Polymer, 2017, 110, 124-130.	1.8	20
14	Incorporation of Nonionic Emulsifier Inside Carboxylated Polymer Particles during Emulsion Copolymerization: Influence of Methacrylic Acid Content. Langmuir, 2009, 25, 101-106.	1.6	19
15	Latent Heat Enhancement of Paraffin Wax in Poly(divinylbenzene <i>-co-</i> methyl methacrylate) Microcapsule. Polymer-Plastics Technology and Engineering, 2015, 54, 779-785.	1.9	19
16	Incorporation of nonionic emulsifiers inside styrene–methacrylic acid copolymer particles during emulsion copolymerization. Polymer, 2008, 49, 3042-3047.	1.8	18
17	Preparation of Poly(l-Lactic Acid) Microencapsulated Vitamin E. Energy Procedia, 2013, 34, 656-663.	1.8	17
18	Novel superabsorbent materials from bacterial cellulose. Polymer International, 2019, 68, 102-109.	1.6	17

A CHAIYASAT

#	Article	IF	CITATIONS
19	Influence of hydrophilic–lipophilic balance of nonionic emulsifiers on emulsion copolymerization of styrene and methacrylic acid. Colloid and Polymer Science, 2007, 285, 1755-1761.	1.0	15
20	Innovative and high performance synthesis of microcapsules containing methyl anthranilate by microsuspension iodine transfer polymerization. Polymer International, 2017, 66, 1921-1927.	1.6	13
21	Novel reusable <scp>pH</scp> â€responsive photocatalyst polymeric microcapsules for dye treatment. International Journal of Energy Research, 2021, 45, 7535-7548.	2.2	12
22	Preparation and characterization of nanocomposites of natural rubber with polystyrene and styrene-methacrylic acid copolymer nanoparticles. EXPRESS Polymer Letters, 2012, 6, 511-518.	1.1	11
23	Novel Green Hydrogel Material using Bacterial Cellulose. Oriental Journal of Chemistry, 2018, 34, 1735-1740.	0.1	10
24	Influence of Poly(<scp>L</scp> -lactic acid) Molecular Weight on the Encapsulation Efficiency of Urea in Microcapsule Using a Simple Solvent Evaporation Technique. Polymer-Plastics Technology and Engineering, 2016, 55, 1131-1136.	1.9	9
25	Microsuspension iodine transfer polymerization (ms ITP) for synthesis of micrometer-size, "hydrophilic―polymer particles. Polymer, 2018, 154, 128-134.	1.8	9
26	Multifunctional Polymer Particles Containing Quaternary Ammonium for Antimicrobial Particulate Surfactants and Defoaming. ACS Applied Polymer Materials, 2021, 3, 3549-3559.	2.0	9
27	INNOVATIVE BIFUNCTIONAL MICROCAPSULE FOR HEAT STORAGE AND ANTIBACTERIAL PROPERTIES. International Journal of GEOMATE, 2018, 14, .	0.1	9
28	Preparation of Poly(l-lactic acid) Capsule Encapsulating Fertilizer. Advanced Materials Research, 0, 506, 303-306.	0.3	8
29	High Encapsulation Efficiency of Magnetite Nanoparticles in Hydrophobic Polymer Microcapsules using Microsuspension Conventional Radical Polymerization. Oriental Journal of Chemistry, 2019, 35, 516-522.	0.1	8
30	Poly(L-Lactic Acid)-Based Microcapsule Containing Phase-Change Material: Influence of Polymer Shell on Particle Morphology. Fibers and Polymers, 2020, 21, 935-943.	1.1	8
31	Synthesis of Uniform and Stable Molecularly Imprinted Polymer Particles by Precipitation Polymerization. Oriental Journal of Chemistry, 2017, 33, 2370-2376.	0.1	6
32	Composite polymer particles containing bismuth vanadate particles for self-cleaning fabrics. Journal of Industrial Textiles, 2022, 51, 1476S-1498S.	1.1	5
33	UV-activated coating polymer particle containing quaternary ammonium for antimicrobial fabrics. Colloid and Polymer Science, 2022, 300, 351-364.	1.0	5
34	Preparation and Characterization of Natural Rubber/Poly [Styrene-co-2-(Methacryloyloxy) Ethyl Trimethylammonium Chloride] Nanocomposites by Heterocoagulation. Energy Procedia, 2013, 34, 647-655.	1.8	4
35	A novel iron aluminate composite polymer particle for high-efficiency self-coating solar heat reflection. Solar Energy Materials and Solar Cells, 2021, 230, 111248.	3.0	4
36	Emulsion iodine transfer polymerization of nearly uniform submicrometerâ€sized polystyrene particles. Polymer International, 0, , .	1.6	4

Α CHAIYASAT

#	Article	IF	CITATIONS
37	Synthesis of uniform submicron poly(lactic acid)-based particles/capsules by radical precipitation polymerization. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112122.	2.5	4
38	Heterocoaggulation of Natural Rubber Latex and Poly [Styrene-co-2-(Methacryloyloxy) Ethyl Trimethylammonium Chroride] Nanoparticles. Advanced Materials Research, 2012, 506, 299-302.	0.3	2
39	Incorporation Behavior of Nonionic Emulsifiers inside Particles and Secondary Particle Nucleation during Emulsion Polymerization of Styrene. Langmuir, 2020, 36, 9747-9755.	1.6	2
40	Secondary particle formation in suspension polymerization using a particulate surfactant. Polymer-Plastics Technology and Materials, 2020, 59, 1801-1811.	0.6	2