Anna Katarzyna Jasińska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9412708/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Do secondary sexual dimorphism and female intolerance to drought influence the sex ratio and extinction risk of Taxus baccata?. Plant Ecology, 2009, 200, 229-240.	1.6	47
2	Effect of the Aegean Sea barrier between Europe and Asia on differentiation in <i>Juniperus drupacea</i> (Cupressaceae). Botanical Journal of the Linnean Society, 2016, 180, 365-385.	1.6	31
3	Cryptic hybrids between Pinus uncinata and P. sylvestris. Botanical Journal of the Linnean Society, 0, 163, 473-485.	1.6	30
4	Morphological versus molecular markers to describe variability in Juniperus excelsa subsp. excelsa (Cupressaceae). AoB PLANTS, 2012, 2012, pls013.	2.3	29
5	Novel BRCA1 mutations and more frequent intron-20 alteration found among 236 women from Western Poland. Oncogene, 1997, 15, 1773-1779.	5.9	28
6	Global biogeographic synthesis and priority conservation regions of the relict tree family Juglandaceae. Journal of Biogeography, 2020, 47, 643-657.	3.0	28
7	The biogeography and genetic relationships of <i>Juniperus oxycedrus</i> and related taxa from the Mediterranean and Macaronesian regions. Botanical Journal of the Linnean Society, 2014, 174, 637-653.	1.6	27
8	Numerical taxonomy of Juniperus thurifera, J. excelsa and J. foetidissima (Cupressaceae) based on morphological characters. Botanical Journal of the Linnean Society, 0, 155, 483-495.	1.6	26
9	Weak competitive ability may explain decline of Taxus baccata. Annals of Forest Science, 2012, 69, 705-712.	2.0	25
10	Relationships among Cedrus libani, C. brevifolia and C. atlantica as revealed by the morphological and anatomical needle characters. Plant Systematics and Evolution, 2013, 299, 35-48.	0.9	25
11	Past, present, and future geographic range of an oro-Mediterranean Tertiary relict: The juniperus drupacea case study. Regional Environmental Change, 2019, 19, 1507-1520.	2.9	24
12	Morphological differentiation supports the genetic pattern of the geographic structure of Juniperus thurifera (Cupressaceae). Plant Systematics and Evolution, 2013, 299, 773-784.	0.9	23
13	Distance between south-European and south-west Asiatic refugial areas involved morphological differentiation: Pinus sylvestris case study. Plant Systematics and Evolution, 2014, 300, 1487-1502.	0.9	20
14	Taxonomic and geographic differentiation of <i>Pinus mugo</i> complex on the needle characteristics. Systematics and Biodiversity, 2015, 13, 581-595.	1.2	20
15	Genome size and ploidy levels in highly fragmented habitats: the case of western Mediterranean Juniperus (Cupressaceae) with special emphasis on J. thurifera L Tree Genetics and Genomes, 2013, 9, 587-599.	1.6	19
16	Impact of elevated atmospheric humidity on anatomical and hydraulic traits of xylem in hybrid aspen. Functional Plant Biology, 2015, 42, 565.	2.1	18
17	Effect of tree age on needle morphology and anatomy of Pinus uliginosa and Pinus silvestris – species-specific character separation during ontogenesis. Flora: Morphology, Distribution, Functional Ecology of Plants, 2008, 203, 617-626.	1.2	16
18	Geographic distribution of quantitative traits variation and genetic variability in natural populations of Pinus mugo in Central Europe. Dendrobiology, 0, 72, 65-84.	0.6	15

#	Article	IF	CITATIONS
19	Past, present and future suitable areas for the relict tree Pterocarya fraxinifolia (Juglandaceae): Integrating fossil records, niche modeling, and phylogeography for conservation. European Journal of Forest Research, 2021, 140, 1323-1339.	2.5	14
20	Does increased air humidity affect stomatal morphology and functioning in hybrid aspen?. Botany, 2015, 93, 243-250.	1.0	12
21	Biogeography and relationships of the Abies taxa from the mediterranean and central Europe regions as revealed by nuclear DNA markers and needle structural characters. Forest Ecology and Management, 2021, 479, 118606.	3.2	12
22	Morphological differentiation of leaves in the relict tree Zelkova carpinifolia (Ulmaceae). Dendrobiology, 0, 74, 109-122.	0.6	12
23	Increasing air humidity – a climate trend predicted for northern latitudes – alters the chemical composition of stemwood in silver birch and hybrid aspen. Silva Fennica, 2014, 48, .	1.3	9
24	Genetic Consequences of Hybridization in Relict Isolated Trees Pinus sylvestris and the Pinus mugo Complex. Forests, 2020, 11, 1086.	2.1	8
25	Taxonomic relationships and population differentiation of the south-western Eurasian Zelkova species inferred in leaf morphology. Dendrobiology, 0, 85, 60-77.	0.6	8
26	Effect of geographic range discontinuity on taxonomic differentiation of Abies cilicica. Acta Societatis Botanicorum Poloniae, 2015, 84, 419-430.	0.8	7
27	Stomatal density in <i>Pinus sylvestris</i> as an indicator of temperature rather than CO ₂ : Evidence from a panâ€European transect. Plant, Cell and Environment, 2022, 45, 121-132.	5.7	7
28	Taxonomic position of Abies equi-trojani on the basis of needlecharacters by comparison with different fir species. Turkish Journal of Botany, 2017, 41, 620-631.	1.2	5
29	Genetic diversity and differentiation of the riparian relict tree <i>Pterocarya fraxinifolia</i> (Juglandaceae) along altitudinal gradients in the Hyrcanian forest (Iran). Silva Fennica, 2018, 52, .	1.3	5
30	Adjustment of leaf anatomical and hydraulic traits across vertical canopy profiles of young broadleaved forest stands. Trees - Structure and Function, 2022, 36, 67-80.	1.9	3
31	Desiccation, dormancy, and storage of <i>Pterocarya fraxinifolia</i> (Juglandaceae) seeds: application in Hyrcanian and Colchian forest conservation. Canadian Journal of Forest Research, 2020, 50, 24-31.	1.7	2
32	Leaf differentiation of extinct and remnant species of <i>Zelkova</i> in Western Eurasia. Plant Biosystems, 2022, 156, 1307-1313.	1.6	2
33	Morphology supports the geographic pattern of genetic differentiation of Pinus sylvestris (Pinaceae) in the Iberian Peninsula. Plant Biosystems, 0, , 1-9.	1.6	1
34	Demographic history and range modelling of the East Mediterranean Abies cilicica. Plant and Fungal Systematics, 2021, 66, 122-132.	0.5	0