Daniel S Gianola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9412270/publications.pdf

Version: 2024-02-01

54 papers

3,853 citations

201674 27 h-index 54 g-index

54 all docs

54 docs citations

54 times ranked

4427 citing authors

#	Article	IF	CITATIONS
1	Growth and structural transitions of core-shell nanorods in nanocrystalline Al-Ni-Y. Scripta Materialia, 2022, 211, 114502.	5.2	6
2	Crack propagation in low dislocation density quantum dot lasers epitaxially grown on Si. APL Materials, 2022, 10, .	5.1	6
3	Anisotropic Thermally Conductive Composites Enabled by Acoustophoresis and Stereolithography. Advanced Functional Materials, 2022, 32, .	14.9	6
4	Electron backscattered diffraction using a new monolithic direct detector: High resolution and fast acquisition. Ultramicroscopy, 2021, 220, 113160.	1.9	20
5	Modeling meso- and microstructure in materials patterned with acoustic focusing. Materials and Design, 2021, 202, 109512.	7.0	8
6	Recent progress in acoustic field-assisted 3D-printing of functional composite materials. MRS Advances, 2021, 6, 636-643.	0.9	11
7	Disordered interfaces enable high temperature thermal stability and strength in a nanocrystalline aluminum alloy. Acta Materialia, 2021, 215, 116973.	7.9	27
8	Influence of plastic deformation on the magnetic properties of Heusler MnAu2Al. Physical Review Materials, 2021, 5, .	2.4	3
9	Bulk nanocrystalline Al alloys with hierarchical reinforcement structures via grain boundary segregation and complexion formation. Acta Materialia, 2021, 221, 117394.	7.9	22
10	Multiplicity of dislocation pathways in a refractory multiprincipal element alloy. Science, 2020, 370, 95-101.	12.6	159
11	Mapping the kinetic evolution of metastable grain boundaries under non-equilibrium processing. Acta Materialia, 2020, 200, 328-337.	7.9	11
12	Microscopic origin of shear banding as a localized driven glass transition in compressed colloidal pillars. Physical Review E, 2020, 102, 032605.	2.1	1
13	Origins of strengthening and failure in twinned Au nanowires: Insights from inâ^'situ experiments and atomistic simulations. Acta Materialia, 2020, 187, 166-175.	7.9	15
14	Suppression of shear localization in nanocrystalline Al–Ni–Ce via segregation engineering. Acta Materialia, 2020, 188, 63-78.	7.9	18
15	Suppressing instabilities in defect-scarce nanowires by controlling the energy release rate during incipient plasticity. Materials and Design, 2020, 189, 108460.	7.0	9
16	Interfacial structure and strain accommodation in two-phase NbCo1.2Sn Heusler intermetallics. Physical Review Materials, 2020, 4, .	2.4	4
17	Bridging functional nanocomposites to robust macroscale devices. Science, 2019, 364, .	12.6	118
18	Flexible Conductive Composites with Programmed Electrical Anisotropy Using Acoustophoresis. Advanced Materials Technologies, 2019, 4, 1900586.	5.8	30

#	Article	IF	Citations
19	Dislocation dynamics in a nickel-based superalloy via in-situ transmission scanning electron microscopy. Acta Materialia, 2019, 168, 152-166.	7.9	46
20	New techniques for imaging and identifying defects in electron microscopy. MRS Bulletin, 2019, 44, 450-458.	3.5	9
21	Controlling dislocation nucleation-mediated plasticity in nanostructures via surface modification. Acta Materialia, 2019, 166, 572-586.	7.9	40
22	Transmission scanning electron microscopy: Defect observations and image simulations. Ultramicroscopy, 2018, 186, 49-61.	1.9	42
23	Femtosecond laser rejuvenation of nanocrystalline metals. Acta Materialia, 2018, 156, 183-195.	7.9	14
24	Structure-property relationships from universal signatures of plasticity in disordered solids. Science, 2017, 358, 1033-1037.	12.6	218
25	Compression and recovery of carbon nanotube forests described as a phase transition. International Journal of Solids and Structures, 2017, 122-123, 196-209.	2.7	24
26	High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture. Nature Nanotechnology, 2017, 12, 228-232.	31.5	75
27	Interplay between grain boundary segregation and electrical resistivity in dilute nanocrystalline Cu alloys. Scripta Materialia, 2016, 123, 113-117.	5.2	10
28	Isochemical control over structural state and mechanical properties in Pd-based metallic glass by sputter deposition at elevated temperatures. APL Materials, 2016, 4, 086104.	5.1	14
29	Linking stress-driven microstructural evolution in nanocrystalline aluminium with grain boundary doping of oxygen. Nature Communications, 2016, 7, 11225.	12.8	33
30	Thermomechanical Behavior of Molded Metallic Glass Nanowires. Scientific Reports, 2016, 6, 19530.	3.3	17
31	Orthogonal Control of Stability and Tunable Dry Adhesion by Tailoring the Shape of Tapered Nanopillar Arrays. Advanced Materials, 2015, 27, 7788-7793.	21.0	35
32	A Robust Smart Window: Reversibly Switching from High Transparency to Angleâ€Independent Structural Color Display. Advanced Materials, 2015, 27, 2489-2495.	21.0	371
33	Full recovery takes time. Nature Nanotechnology, 2015, 10, 659-660.	31.5	9
34	Measuring surface dislocation nucleation in defect-scarce nanostructures. Nature Materials, 2015, 14, 707-713.	27.5	155
35	Robust scaling of strength and elastic constants and universal cooperativity in disordered colloidal micropillars. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18167-18172.	7.1	8
36	Temperature controlled tensile testing of individual nanowires. Review of Scientific Instruments, 2014, 85, 013901.	1.3	15

3

#	Article	IF	CITATIONS
37	Synthesis and mechanical response of disordered colloidal micropillars. Physical Chemistry Chemical Physics, 2014, 16, 10274-10285.	2.8	11
38	Understanding the mechanical behavior of nanocrystalline Al–O thin films with complex microstructures. Acta Materialia, 2014, 77, 269-283.	7.9	11
39	Effect of organometallic clamp properties on the apparent diversity of tensile response of nanowires. Nanotechnology, 2013, 24, 235704.	2.6	31
40	Tunable Tensile Ductility in Metallic Glasses. Scientific Reports, 2013, 3, .	3.3	118
41	Lattice Anharmonicity in Defect-Free Pd Nanowhiskers. Physical Review Letters, 2012, 109, 125503.	7.8	52
42	The role of confinement on stress-driven grain boundary motion in nanocrystalline aluminum thin films. Journal of Applied Physics, 2012, 112, .	2.5	24
43	Source-based strengthening of sub-micrometer Al fibers. Acta Materialia, 2012, 60, 977-983.	7.9	77
44	Existence of two twinning-mediated plastic deformation modes in Au nanowhiskers. Acta Materialia, 2012, 60, 3985-3993.	7.9	127
45	<i>In situ</i> nanomechanical testing in focused ion beam and scanning electron microscopes. Review of Scientific Instruments, 2011, 82, 063901.	1.3	88
46	In Situ Measurement of the Toughness of the Interface Between a Thermal Barrier Coating and a Ni Alloy. Journal of the American Ceramic Society, 2011, 94, s120.	3.8	22
47	Mechanical Characterization of Coatings Using Microbeam Bending and Digital Image Correlation Techniques. Experimental Mechanics, 2010, 50, 85-97.	2.0	72
48	Size Independent Shape Memory Behavior of Nickel–Titanium. Advanced Engineering Materials, 2010, 12, 808-815.	3.5	46
49	Extremely low drift of resistance and threshold voltage in amorphous phase change nanowire devices. Applied Physics Letters, 2010, 96, .	3.3	91
50	In situ deformation of thin films on substrates. Microscopy Research and Technique, 2009, 72, 270-283.	2.2	40
51	Ultrahigh Strength Single Crystalline Nanowhiskers Grown by Physical Vapor Deposition. Nano Letters, 2009, 9, 3048-3052.	9.1	406
52	Experimental Observations of Stress-Driven Grain Boundary Migration. Science, 2009, 326, 1686-1690.	12.6	536
53	In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Materialia, 2008, 56, 3380-3393.	7.9	372
54	Strain Measurements of Silicon Dioxide Microspecimens by Digital Imaging Processing. Experimental Mechanics, 2007, 47, 649-658.	2.0	120