
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/941206/publications.pdf Version: 2024-02-01

Ι ΙΝ ΥΠΑΝ

#	Article	IF	CITATIONS
1	Biocompatible polymer materials: Role of protein–surface interactions. Progress in Polymer Science, 2008, 33, 1059-1087.	11.8	617
2	Blood compatible materials: state of the art. Journal of Materials Chemistry B, 2014, 2, 5718-5738.	2.9	237
3	Different Inhibitory Effect and Mechanism of Hydroxyapatite Nanoparticles on Normal Cells and Cancer Cells In Vitro and In Vivo. Scientific Reports, 2014, 4, 7134.	1.6	139
4	Sensitive sandwich ELISA based on a gold nanoparticle layer for cancer detection. Analyst, The, 2012, 137, 1779.	1.7	106
5	Internalization of hydroxyapatite nanoparticles in liver cancer cells. Journal of Materials Science: Materials in Medicine, 2008, 19, 1091-1095.	1.7	88
6	Modulating the Activity of Protein Conjugated to Gold Nanoparticles by Site-Directed Orientation and Surface Density of Bound Protein. ACS Applied Materials & Interfaces, 2015, 7, 3717-3724.	4.0	88
7	Bifunctional Nanoparticles with Fluorescence and Magnetism via Surface-Initiated AGET ATRP Mediated by an Iron Catalyst. Langmuir, 2011, 27, 12684-12692.	1.6	77
8	Surface Modification to Control Protein/Surface Interactions. Macromolecular Bioscience, 2011, 11, 1031-1040.	2.1	73
9	2-Hydroxypropyl-beta-cyclodextrin increases aqueous solubility and photostability of all-trans-retinoic acid. Journal of Clinical Pharmacy and Therapeutics, 2000, 25, 265-269.	0.7	70
10	High antibacterial efficiency of pDMAEMA modified silicon nanowire arrays. Colloids and Surfaces B: Biointerfaces, 2011, 83, 355-359.	2.5	67
11	Maintaining the pluripotency of mouse embryonic stem cells on gold nanoparticle layers with nanoscale but not microscale surface roughness. Nanoscale, 2014, 6, 6959.	2.8	54
12	Temperature―and pHâ€5ensitive Multicolored Micellar Complexes. Advanced Materials, 2009, 21, 2402-2406.	11.1	50
13	6- <i>O</i> -Sulfated Chitosan Promoting the Neural Differentiation of Mouse Embryonic Stem Cells. ACS Applied Materials & Interfaces, 2014, 6, 20043-20050.	4.0	49
14	Step-wise control of protein adsorption and bacterial attachment on a nanowire array surface: tuning surface wettability by salt concentration. Journal of Materials Chemistry, 2011, 21, 13920.	6.7	48
15	Recyclable <i>Escherichia coli</i> -Specific-Killing AuNP–Polymer (ESKAP) Nanocomposites. ACS Applied Materials & Interfaces, 2016, 8, 11309-11317.	4.0	48
16	Incorporation of tyrosine phosphate into tetraphenylethylene affords an amphiphilic molecule for alkaline phosphatase detection, hydrogelation and calcium mineralization. Journal of Materials Chemistry B, 2013, 1, 5550.	2.9	47
17	Gold Nanoparticle Layer: A Promising Platform for Ultra-Sensitive Cancer Detection. Langmuir, 2011, 27, 2155-2158.	1.6	45
18	Oneâ€ <scp>P</scp> ot Synthesis of Glycopolymerâ€ <scp>P</scp> orphyrin Conjugate as Photosensitizer for Targeted Cancer Imaging and Photodynamic Therapy. Macromolecular Bioscience, 2014, 14, 340-346.	2.1	45

#	Article	IF	CITATIONS
19	A new avenue to the synthesis of GAG-mimicking polymers highly promoting neural differentiation of embryonic stem cells. Chemical Communications, 2015, 51, 15434-15437.	2.2	45
20	Temperature-Responsive Poly(<i>N</i> -isopropylacrylamide) Modified Gold Nanoparticle–Protein Conjugates for Bioactivity Modulation. ACS Applied Materials & Interfaces, 2015, 7, 11547-11554.	4.0	44
21	Peptide Glycosylation Generates Supramolecular Assemblies from Glycopeptides as Biomimetic Scaffolds for Cell Adhesion and Proliferation. ACS Applied Materials & Interfaces, 2016, 8, 6917-6924.	4.0	44
22	Cell Adhesion on a POEGMA-Modified Topographical Surface. Langmuir, 2012, 28, 17011-17018.	1.6	43
23	Control the Wettability of Poly(<i>N</i> -isopropylacrylamide- <i>co</i> -1-adamantan-1-ylmethyl) Tj ETQq1 1 0.7	784314 rgE 1.6	3T /Qyerlock
24	Inhibition of protein adsorption and cell adhesion on PNIPAAm-grafted polyurethane surface: Effect of graft molecular weight. Colloids and Surfaces B: Biointerfaces, 2011, 85, 26-31.	2.5	40
25	Cell adhesion on chiral surface: The role of protein adsorption. Colloids and Surfaces B: Biointerfaces, 2012, 90, 97-101.	2.5	40
26	pH-Reversible, High-Capacity Binding of Proteins on a Substrate with Nanostructure. Langmuir, 2010, 26, 17812-17815.	1.6	35
27	Aptamer-Modified Micro/Nanostructured Surfaces: Efficient Capture of Ramos Cells in Serum Environment. ACS Applied Materials & amp; Interfaces, 2013, 5, 3816-3823.	4.0	33
28	Phenomenon of "contact guidance" on the surface with nano-micro-groove-like pattern and cell physiological effects. Science Bulletin, 2009, 54, 3200-3205.	1.7	32
29	The synergistic effects of stimuli-responsive polymers with nano- structured surfaces: wettability and protein adsorption. RSC Advances, 2011, 1, 262.	1.7	31
30	Deciphering the Role of Sulfonated Unit in Heparin-Mimicking Polymer to Promote Neural Differentiation of Embryonic Stem Cells. ACS Applied Materials & Interfaces, 2017, 9, 28209-28221.	4.0	31
31	Stimulation of Gene Transfection by Silicon Nanowire Arrays Modified with Polyethylenimine. ACS Applied Materials & Interfaces, 2014, 6, 14391-14398.	4.0	30
32	Guiding the behaviors of human umbilical vein endothelial cells with patterned silk fibroin films. Colloids and Surfaces B: Biointerfaces, 2014, 122, 79-84.	2.5	30
33	Synthetic Glycopolymers for Highly Efficient Differentiation of Embryonic Stem Cells into Neurons: Lipo- or Not?. ACS Applied Materials & Interfaces, 2017, 9, 11518-11527.	4.0	29
34	A surface decorated with diblock copolymer for biomolecular conjugation. Soft Matter, 2010, 6, 2616.	1.2	28
35	Recyclable antibacterial material: silicon grafted with 3,6-O-sulfated chitosan and specifically bound by lysozyme. Journal of Materials Chemistry B, 2014, 2, 569-576.	2.9	28
36	Biomacromolecular affinity: Interactions between lysozyme and regioselectively sulfated chitosan. Colloids and Surfaces B: Biointerfaces, 2009, 73, 346-350.	2.5	27

#	Article	IF	CITATIONS
37	Reductase-like Activity of Silicon Nanowire Arrays. ACS Applied Materials & Interfaces, 2013, 5, 1800-1805.	4.0	27
38	Catalase-like and Peroxidase-like Catalytic Activities of Silicon Nanowire Arrays. Langmuir, 2013, 29, 3-7.	1.6	26
39	Integrating a thermoresponsive copolymer with host–guest interactions for fabricating molecular recognition surfaces. Materials Horizons, 2014, 1, 540-545.	6.4	26
40	Regulation of Protein Binding Capability of Surfaces via Host–Guest Interactions: Effects of Localized and Average Ligand Density. Langmuir, 2015, 31, 6172-6178.	1.6	23
41	Improving the protein activity and stability under acidic conditions via site-specific conjugation of a pH-responsive polyelectrolyte. Journal of Materials Chemistry B, 2015, 3, 498-504.	2.9	22
42	Enhancing Specific Binding of L929 Fibroblasts: Effects of Multiâ€ S cale Topography of GRGDY Peptide Modified Surfaces. Macromolecular Bioscience, 2012, 12, 1391-1400.	2.1	21
43	Protein–polymer conjugates prepared via host–guest interactions: effects of the conjugation site, polymer type and molecular weight on protein activity. Polymer Chemistry, 2016, 7, 5139-5146.	1.9	21
44	New Strategy for Reversible Modulation of Protein Activity through Site-Specific Conjugation of Small Molecule and Polymer. Bioconjugate Chemistry, 2014, 25, 1252-1260.	1.8	20
45	Multifunctional nanoparticle–protein conjugates with controllable bioactivity and pH responsiveness. Nanoscale, 2016, 8, 4387-4394.	2.8	20
46	Fabrication of cell pattern on poly(dimethylsiloxane) by vacuum ultraviolet lithography. Colloids and Surfaces B: Biointerfaces, 2010, 76, 381-385.	2.5	19
47	"Nano-catalyst―for DNA transformation. Journal of Materials Chemistry, 2011, 21, 6148.	6.7	19
48	Efficient Transfection by Using PDMAEMA-Modified SiNWAs as a Platform for Ca ²⁺ -Dependent Gene Delivery. ACS Applied Materials & Interfaces, 2016, 8, 15138-15144.	4.0	17
49	Improvement of Site-Directed Protein–Polymer Conjugates: High Bioactivity and Stability Using a Soft Chain-Transfer Agent. ACS Applied Materials & Interfaces, 2016, 8, 15967-15974.	4.0	17
50	Lotus-Leaf-Like Topography Predominates over Adsorbed ECM Proteins in Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyhexanoate) Surface/Cell Interactions. ACS Applied Materials & Interfaces, 2013, 5, 5882-5887.	4.0	16
51	Improvement in the Thermal Stability of Pyrophosphatase by Conjugation to Poly(<i>N</i> -isopropylacrylamide): Application to the Polymerase Chain Reaction. ACS Applied Materials & Interfaces, 2015, 7, 21913-21918.	4.0	16
52	Promoting neural differentiation of embryonic stem cells using β-cyclodextrin sulfonate. Journal of Materials Chemistry B, 2017, 5, 1896-1900.	2.9	16
53	Gold nanoparticle–protein conjugate dually-responsive to pH and temperature for modulation of enzyme activity. Journal of Materials Chemistry B, 2019, 7, 3260-3267.	2.9	14
54	Rapid antibacterial effect of sunlight-exposed silicon nanowire arrays modified with Au/Ag alloy nanoparticles. Journal of Materials Chemistry B, 2019, 7, 6202-6209.	2.9	14

#	Article	IF	CITATIONS
55	Immobilization of proteins on metal ion chelated polymer surfaces. Colloids and Surfaces B: Biointerfaces, 2009, 69, 71-76.	2.5	12
56	Silicon Nanowire Arrays – A New Catalyst for the Reduction of Nitrobenzene Derivatives. ChemCatChem, 2013, 5, 3788-3793.	1.8	12
57	Glutathione-Sensitive Silicon Nanowire Arrays for Gene Transfection. ACS Applied Materials & Interfaces, 2019, 11, 46515-46524.	4.0	12
58	Altered enzymatic activity of lysozymes bound to variously sulfated chitosans. Chinese Journal of Polymer Science (English Edition), 2012, 30, 893-899.	2.0	11
59	One-step synthesis of glycoprotein mimics in vitro: improvement of protein activity, stability and application in CPP hydrolysis. Journal of Materials Chemistry B, 2016, 4, 5437-5445.	2.9	11
60	Controlling the biointerface of electrospun mats for clot lysis: an engineered tissue plasminogen activator link to a lysine-functionalized surface. Journal of Materials Chemistry B, 2014, 2, 4272.	2.9	10
61	Multifunctional gold nanoparticle layers for controllable capture and release of proteins. Nanoscale, 2017, 9, 15407-15415.	2.8	10
62	One-step preparation of gold nanovectors using folate modified polyethylenimine and their use in target-specific gene transfection. Colloids and Surfaces B: Biointerfaces, 2019, 177, 306-312.	2.5	10
63	Thermally responsive silicon nanowire arrays for native/denatured-protein separation. Nanotechnology, 2013, 24, 105101.	1.3	9
64	Conformational Changes of Protein Adsorbed on Tailored Flat Substrates with Different Chemistries. ChemPhysChem, 2011, 12, 3642-3646.	1.0	8
65	Heparin mimics and fibroblast growth factor-2 fabricated nanogold composite in promoting neural differentiation of mouse embryonic stem cells. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1623-1647.	1.9	8
66	A simple, rapid oneâ€step <scp>ELISA</scp> using antibody–antibody complex. Biotechnology and Applied Biochemistry, 2015, 62, 126-131.	1.4	6
67	Small addition of Zn ²⁺ in Ca ²⁺ @DNA results in elevated gene transfection by aminated PGMA-modified silicon nanowire arrays. Journal of Materials Chemistry B, 2019, 7, 566-575.	2.9	6
68	Recycling protein selective adsorption on fluorine-modified surface through fluorine-fluorine interaction. Colloids and Surfaces B: Biointerfaces, 2022, 214, 112486.	2.5	6
69	Incorporation of Lysineâ€Containing Copolymer with Polyurethane Affording Biomaterial with Specific Adsorption of Plasminogen. Chinese Journal of Chemistry, 2014, 32, 44-50.	2.6	5
70	Inhibitory effect of silicon nanowires on the polymerase chain reaction. Nanotechnology, 2012, 23, 365101.	1.3	3
71	Specific photothermal killing of cancer cells by RNase-conjugated glyco-gold nanoparticles. Materials Today Communications, 2021, 28, 102640.	0.9	3
72	The construct of triple responsive nanocomposite and its antibacterial effect. Colloids and Surfaces B: Biointerfaces, 2022, 212, 112378.	2.5	3

#	Article	IF	CITATIONS
73	Effects of contact guidance and gravity on L929 cell orientation. Science Bulletin, 2011, 56, 977-981.	1.7	2
74	Application of Polyethylenimine-Grafted Silicon Nanowire Arrays for Gene Transfection. Methods in Molecular Biology, 2016, 1445, 279-287.	0.4	2
75	The chemodynamic antibacterial effect of MnO _{<i>X</i>} nanosheet decorated silicon nanowire arrays. Materials Advances, 2022, 3, 526-533.	2.6	2
76	A novel antibacterial gold nanoparticle layer with a self-cleaning ability through the production of oxygen bubbles. Journal of Materials Chemistry B, 2022, 10, 4203-4215.	2.9	2
77	A novel nerve guidance conduit with sustained release of NGF enhances sciatic nerve regeneration. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 944-947.	0.4	1
78	Blood compatibility of nano-hydroxyapatite dispersed using various agents. Wuhan University Journal of Natural Sciences, 2010, 15, 350-354.	0.2	1
79	Promoting the neural differentiation of embryonic stem cells by using thermosensitive nanocomposites. Materials Advances, 2021, 2, 4380-4391.	2.6	1
80	Gold Nanoparticle-Protein Conjugate Dually-Responsive to pH and Temperature for Modulation of Enzyme Activity. SSRN Electronic Journal, 0, , .	0.4	0
81	Promoting gene transfection by ROS responsive silicon nanowire arrays. Journal of Materials Chemistry B, 0, , .	2.9	0