JÃ³zef Jonak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9411509/publications.pdf Version: 2024-02-01

IÃ37EE IONAK

#	Article	IF	CITATIONS
1	Early fault detection in gearboxes based on support vector machines and multilayer perceptron with a continuous wavelet transform. Applied Soft Computing Journal, 2015, 30, 636-641.	4.1	99
2	Classification of wear level of mining tools with the use of fuzzy neural network. Tunnelling and Underground Space Technology, 2013, 35, 30-36.	3.0	37
3	Intracellular expression profiles measured by real-time PCR tomography in the Xenopus laevis oocyte. Nucleic Acids Research, 2008, 36, 387-392.	6.5	35
4	Failure analysis of thin-walled composite channel section columns. Composite Structures, 2015, 132, 567-574.	3.1	31
5	Towards the identification of worn picks on cutterdrums based on torque and power signals using Artificial Neural Networks. Tunnelling and Underground Space Technology, 2011, 26, 22-28.	3.0	27
6	Failure Diagnosis of a Gear Box by Recurrences. Journal of Vibration and Acoustics, Transactions of the ASME, 2012, 134, .	1.0	25
7	A disassembly-free method for evaluation of spiral bevel gear assembly. Mechanical Systems and Signal Processing, 2017, 88, 399-412.	4.4	25
8	Comparison of Diagnostic Accuracy of Physical Examination and MRI in the Most Common Knee Injuries. Applied Sciences (Switzerland), 2019, 9, 4102.	1.3	24
9	Analysis of the Rock Failure Cone Size Relative to the Group Effect from a Triangular Anchorage System. Materials, 2020, 13, 4657.	1.3	24
10	Knee MRI Underestimates the Grade of Cartilage Lesions. Applied Sciences (Switzerland), 2021, 11, 1552.	1.3	24
11	Influence of the Undercut Anchor Head Angle on the Propagation of the Failure Zone of the Rock Medium. Materials, 2021, 14, 2371.	1.3	23
12	Three-Dimensional Finite Element Analysis of the Undercut Anchor Group Effect in Rock Cone Failure. Materials, 2020, 13, 1332.	1.3	22
13	Diagnostics of Articular Cartilage Damage Based on Generated Acoustic Signals Using ANN—Part I: Femoral-Tibial Joint. Sensors, 2022, 22, 2176.	2.1	22
14	The Influence of the Physical-Mechanical Parameters of Rock on the Extent of the Initial Failure Zone under the Action of an Undercut Anchor. Materials, 2021, 14, 1841.	1.3	21
15	Numerical simulation of brittle rock loosening during mining process. Computational Materials Science, 2008, 43, 115-118.	1.4	20
16	Diagnostics of Articular Cartilage Damage Based on Generated Acoustic Signals Using ANN—Part II: Patellofemoral Joint. Sensors, 2022, 22, 3765.	2.1	20
17	Detecting and identifying non-stationary courses inÂtheÂripping head power consumption by recurrence plots. Meccanica, 2010, 45, 603-608.	1.2	18
18	Use of Deep Learning Networks and Statistical Modeling to Predict Changes in Mechanical Parameters of Contaminated Bone Cements. Materials, 2020, 13, 5419.	1.3	18

JÃ³zef Jonak

#	Article	IF	CITATIONS
19	Short-Term Effects of Arthroscopic Microfracturation of Knee Chondral Defects in Osteoarthritis. Applied Sciences (Switzerland), 2020, 10, 8312.	1.3	18
20	Influence of the Undercut Anchor Head Angle on the Propagation of the Failure Zone of the Rock Medium—Part II. Materials, 2021, 14, 3880.	1.3	18
21	Mathematical Model and Results of Rock Cutting Modeling. Journal of Mining Science, 2001, 37, 615-618.	0.1	15
22	Identification of ripping tool types with the use of characteristic statistical parameters of time graphs. Tunnelling and Underground Space Technology, 2008, 23, 18-24.	3.0	14
23	Identifying the cutting tool type used in excavations using neural networks. Tunnelling and Underground Space Technology, 2006, 21, 185-189.	3.0	12
24	Utilisation of neural networks to identify the status of the cutting tool point. Tunnelling and Underground Space Technology, 2006, 21, 180-184.	3.0	12
25	The Impact of Contaminating Poly (Methyl Methacrylate) (PMMA) Bone Cements on Their Compressive Strength. Materials, 2021, 14, 2555.	1.3	11
26	Evaluation of the Effect of Selected Physiological Fluid Contaminants on the Mechanical Properties of Selected Medium-Viscosity PMMA Bone Cements. Materials, 2022, 15, 2197.	1.3	11
27	Experimental Verification of Standard Recommendations for Estimating the Load-Carrying Capacity of Undercut Anchors in Rock Material. Advances in Science and Technology Research Journal, 2021, 15, 230-244.	0.4	10
28	Determining the Effect of Rock Strength Parameters on the Breakout Area Utilizing the New Design of the Undercut/Breakout Anchor. Materials, 2022, 15, 851.	1.3	8
29	Effect of Physiological Saline Solution Contamination on Selected Mechanical Properties of Seasoned Acrylic Bone Cements of Medium and High Viscosity. Materials, 2021, 14, 110.	1.3	6
30	Use of Artificial Intelligence in Automation of Rock Cutting by Mining Machines. Journal of Mining Science, 2002, 38, 270-277.	0.1	5
31	Nonlinear analysis of cylindrical gear dynamics under varying tooth breakage. Measurement: Journal of the International Measurement Confederation, 2022, 190, 110721.	2.5	5
32	Influence of Friction on the Chip Size in Cutting the Brittle Materials. Journal of Mining Science, 2001, 37, 407-410.	0.1	4
33	Possibility of Neural Network Application for Predicting the Load on Excavating Machines. Journal of Mining Science, 2002, 38, 397-401.	0.1	3
34	Identification of the operating parameters for the mechanical systeldentification system using EMD algorithm. MATEC Web of Conferences, 2016, 83, 05001.	0.1	3
35	Drilling head knives degradation modelling based on stochastic diffusion processes backed up by state space models. Mechanical Systems and Signal Processing, 2022, 166, 108448.	4.4	3
36	xEMD procedures as a data - Assisted filtering method. AIP Conference Proceedings, 2018, , .	0.3	2

#	Article	IF	CITATIONS
37	Influence of Friction in the Problem of Cutting Wedge Penetration into Brittle Materials. Journal of Mining Science, 2001, 37, 486-488.	0.1	1
38	Influence Exerted by the Shape of Cutting Wedge on the Chip Size. Journal of Mining Science, 2001, 37, 303-306.	0.1	0