Kwang Chul Chung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9411473/publications.pdf

Version: 2024-02-01

105 papers 4,746 citations

87723 38 h-index 64 g-index

106 all docs

106 docs citations

106 times ranked 6336 citing authors

#	Article	IF	CITATIONS
1	Interleukin- $1\hat{1}^2$ and Tumor Necrosis Factor- $\hat{1}$ ± Induce MUC5AC Overexpression through a Mechanism Involving ERK/p38 Mitogen-activated Protein Kinases-MSK1-CREB Activation in Human Airway Epithelial Cells. Journal of Biological Chemistry, 2003, 278, 23243-23250.	1.6	264
2	Proteolytic Cleavage of Extracellular Secreted α-Synuclein via Matrix Metalloproteinases. Journal of Biological Chemistry, 2005, 280, 25216-25224.	1.6	209
3	Induction of Neuronal Cell Death by Rab5A-dependent Endocytosis of α-Synuclein. Journal of Biological Chemistry, 2001, 276, 27441-27448.	1.6	174
4	Function and regulation of Dyrk1A: towards understanding Down syndrome. Cellular and Molecular Life Sciences, 2009, 66, 3235-3240.	2.4	171
5	Protein Kinase Dyrk1 Activates cAMP Response Element-binding Protein during Neuronal Differentiation in Hippocampal Progenitor Cells. Journal of Biological Chemistry, 2001, 276, 39819-39824.	1.6	156
6	α-Synuclein Interacts with Phospholipase D Isozymes and Inhibits Pervanadate-induced Phospholipase D Activation in Human Embryonic Kidney-293 Cells. Journal of Biological Chemistry, 2002, 277, 12334-12342.	1.6	118
7	Zn2+-induced ERK activation mediated by reactive oxygen species causes cell death in differentiated PC12 cells. Journal of Neurochemistry, 2001, 78, 600-610.	2.1	117
8	On the mechanism of internalization of αâ€synuclein into microglia: roles of ganglioside GM1 and lipid raft. Journal of Neurochemistry, 2009, 110, 400-411.	2.1	116
9	Deubiquitinating enzyme USP22 positively regulates câ€Myc stability and tumorigenic activity in mammalian and breast cancer cells. Journal of Cellular Physiology, 2017, 232, 3664-3676.	2.0	113
10	Amino acid sequence motifs and mechanistic features of the membrane translocation of alpha-synuclein. Journal of Neurochemistry, 2006, 97, 265-279.	2.1	110
11	Dyrk1A Phosphorylates p53 and Inhibits Proliferation of Embryonic Neuronal Cells. Journal of Biological Chemistry, 2010, 285, 31895-31906.	1.6	107
12	Dyrk1A Phosphorylates α-Synuclein and Enhances Intracellular Inclusion Formation. Journal of Biological Chemistry, 2006, 281, 33250-33257.	1.6	95
13	Functional modulation of parkin through physical interaction with SUMO-1. Journal of Neuroscience Research, 2006, 84, 1543-1554.	1.3	91
14	Parkin Ubiquitinates and Promotes the Degradation of RanBP2. Journal of Biological Chemistry, 2006, 281, 3595-3603.	1.6	84
15	Proteasome inhibition induces \hat{l}_{\pm} -synuclein SUMOylation and aggregate formation. Journal of the Neurological Sciences, 2011, 307, 157-161.	0.3	82
16	Functional Interaction of Neuronal Cav1.3 L-type Calcium Channel with Ryanodine Receptor Type 2 in the Rat Hippocampus. Journal of Biological Chemistry, 2007, 282, 32877-32889.	1.6	76
17	Novel biphasic effect of pyrrolidine dithiocarbamate on neuronal cell viability is mediated by the differential regulation of intracellular zinc and copper ion levels, NF-?b, and MAP kinases. Journal of Neuroscience Research, 2000, 59, 117-125.	1.3	73
18	Regulation of Cyr61/CCN1 gene expression through RhoA GTPase and p38MAPK signaling pathways. Role of CREB and AP-1 transcription factors. FEBS Journal, 2003, 270, 3408-3421.	0.2	73

#	Article	IF	CITATIONS
19	Parkin Directly Modulates 26S Proteasome Activity. Journal of Neuroscience, 2010, 30, 11805-11814.	1.7	71
20	Parkin Cleaves Intracellular $\hat{l}\pm$ -Synuclein Inclusions via the Activation of Calpain. Journal of Biological Chemistry, 2003, 278, 41890-41899.	1.6	68
21	Two key genes closely implicated with the neuropathological characteristics in Down syndrome: DYRK1A and RCAN1. BMB Reports, 2009, 42, 6-15.	1.1	68
22	Pyrithione, a Zinc Ionophore, Inhibits NF-κB Activation. Biochemical and Biophysical Research Communications, 1999, 259, 505-509.	1.0	66
23	Molecular interaction between parkin and PINK1 in mammalian neuronal cells. Molecular and Cellular Neurosciences, 2009, 40, 421-432.	1.0	62
24	LIM Kinase 1 Activates cAMP-responsive Element-binding Protein during the Neuronal Differentiation of Immortalized Hippocampal Progenitor Cells. Journal of Biological Chemistry, 2004, 279, 8903-8910.	1.6	61
25	The central regulator p62 between ubiquitin proteasome system and autophagy and its role in the mitophagy and Parkinson's disease. BMB Reports, 2020, 53, 56-63.	1.1	60
26	Gintonin Mitigates MPTP-Induced Loss of Nigrostriatal Dopaminergic Neurons and Accumulation of \hat{l}_{\pm} -Synuclein via the Nrf2/HO-1 Pathway. Molecular Neurobiology, 2019, 56, 39-55.	1.9	59
27	Pyrrolidine dithiocarbamate and zinc inhibit proteasome-dependent proteolysis. Experimental Cell Research, 2004, 298, 229-238.	1.2	58
28	Dyrk1A overexpression in immortalized hippocampal cells produces the neuropathological features of Down syndrome. Molecular and Cellular Neurosciences, 2007, 36, 270-279.	1.0	58
29	Human Polycomb protein 2 promotes α-synuclein aggregate formation through covalent SUMOylation. Brain Research, 2011, 1381, 78-89.	1.1	55
30	Evidence that \hat{l}_{\pm} -synuclein functions as a negative regulator of Ca++-dependent \hat{l}_{\pm} -granule release from human platelets. Blood, 2002, 100, 2506-2514.	0.6	51
31	Identification of the amino acid sequence motif of \hat{l} ±-synuclein responsible for macrophage activation. Biochemical and Biophysical Research Communications, 2009, 381, 39-43.	1.0	50
32	New Perspectives of Dyrk1A Role in Neurogenesis and Neuropathologic Features of Down Syndrome. Experimental Neurobiology, 2013, 22, 244-248.	0.7	50
33	Leucine-Rich Repeat Kinase 2 (LRRK2) phosphorylates p53 and induces p21WAF1/CIP1 expression. Molecular Brain, 2015, 8, 54.	1.3	50
34	Induction of MUC8 Gene Expression by Interleukin- $1\hat{l}^2$ Is Mediated by a Sequential ERK MAPK/RSK1/CREB Cascade Pathway in Human Airway Epithelial Cells. Journal of Biological Chemistry, 2003, 278, 34890-34896.	1.6	45
35	Neddylation positively regulates the ubiquitin E3 ligase activity of parkin. Journal of Neuroscience Research, 2012, 90, 1030-1042.	1.3	43
36	Expression of Angiogenic Factor Cyr61 during Neuronal Cell Death via the Activation of c-Jun N-terminal Kinase and Serum Response Factor. Journal of Biological Chemistry, 2003, 278, 13847-13854.	1.6	41

3

#	Article	IF	CITATIONS
37	ASK1 Negatively Regulates the 26 S Proteasome. Journal of Biological Chemistry, 2010, 285, 36434-36446.	1.6	41
38	Differential activation of phospholipases by mitogenic EGF and neurogenic PDGF in immortalized hippocampal stem cell lines. Journal of Neurochemistry, 2001, 78, 1044-1053.	2.1	40
39	Tumor Necrosis Factor- $\hat{l}\pm$ and Phorbol 12-Myristate 13-Acetate Differentially Modulate Cytotoxic Effect of Nitric Oxide Generated by Serum Deprivation in Neuronal PC12 Cells. Journal of Neurochemistry, 2001, 72, 1482-1488.	2.1	39
40	Basic Fibroblast Growth Factor-induced Activation of Novel CREB Kinase during the Differentiation of Immortalized Hippocampal Cells. Journal of Biological Chemistry, 2001, 276, 13858-13866.	1.6	39
41	Regulation of the proapoptotic activity of huntingtin interacting protein 1 by Dyrk1 and caspase-3 in hippocampal neuroprogenitor cells. Journal of Neuroscience Research, 2005, 81, 62-72.	1.3	39
42	Prostaglandin E2 Induces MUC8 Gene Expression via a Mechanism Involving ERK MAPK/RSK1/cAMP Response Element Binding Protein Activation in Human Airway Epithelial Cells. Journal of Biological Chemistry, 2005, 280, 6676-6681.	1.6	38
43	Phospholipase D Prevents Etoposide-Induced Apoptosis by Inhibiting the Expression of Early Growth Response-1 and Phosphatase and Tensin Homologue Deleted on Chromosome 10. Cancer Research, 2006, 66, 784-793.	0.4	38
44	Phospholipase D1 is associated with amyloid precursor protein in Alzheimer's disease. Neurobiology of Aging, 2007, 28, 1015-1027.	1.5	38
45	NF-κB-inducing Kinase Phosphorylates and Blocks the Degradation of Down Syndrome Candidate Region 1. Journal of Biological Chemistry, 2008, 283, 3392-3400.	1.6	38
46	Covalent ISG15 conjugation to CHIP promotes its ubiquitin E3 ligase activity and inhibits lung cancer cell growth in response to type I interferon. Cell Death and Disease, 2018, 9, 97.	2.7	38
47	Dyrk1A negatively regulates the actin cytoskeleton through threonine phosphorylation of N-WASP. Journal of Cell Science, 2012, 125, 67-80.	1.2	36
48	Covalent ISG15 conjugation positively regulates the ubiquitin E3 ligase activity of parkin. Open Biology, 2016, 6, 160193.	1.5	36
49	New insight into transglutaminase 2 and link to neurodegenerative diseases. BMB Reports, 2018, 51, 5-13.	1.1	36
50	Bruton's Tyrosine Kinase Phosphorylates cAMP-responsive Element-binding Protein at Serine 133 during Neuronal Differentiation in Immortalized Hippocampal Progenitor Cells. Journal of Biological Chemistry, 2004, 279, 1827-1837.	1.6	34
51	Zinc induces cell death in immortalized embryonic hippocampal cells via activation of Akt-GSK-3 \hat{l}^2 signaling. Experimental Cell Research, 2007, 313, 312-321.	1.2	33
52	PINK1 stimulates interleukin- $1\hat{l}^2$ -mediated inflammatory signaling via the positive regulation of TRAF6 and TAK1. Cellular and Molecular Life Sciences, 2012, 69, 3301-3315.	2.4	32
53	\hat{l} ±-Synuclein overexpression reduces gap junctional intercellular communication in dopaminergic neuroblastoma cells. Neuroscience Letters, 2007, 416, 289-293.	1.0	30
54	Pyrrolidine dithiocarbamate-induced neuronal cell death is mediated by Akt, casein kinase 2, c-Jun N-terminal kinase, and I?B kinase in embryonic hippocampal progenitor cells. Journal of Neuroscience Research, 2003, 71, 689-700.	1.3	29

#	Article	IF	CITATIONS
55	Multiple ligand interaction of \hat{l}_{\pm} -synuclein produced various forms of protein aggregates in the presence of A \hat{l}^2 25-35, copper, and eosin. Brain Research, 2001, 908, 93-98.	1.1	28
56	Huntingtin-interacting protein 1-mediated neuronal cell death occurs through intrinsic apoptotic pathways and mitochondrial alterations. FEBS Letters, 2006, 580, 5275-5282.	1.3	28
57	The F-box protein FBXO7 positively regulates bone morphogenetic protein-mediated signaling through Lys-63-specific ubiquitination of neurotrophin receptor-interacting MAGE (NRAGE). Cellular and Molecular Life Sciences, 2015, 72, 181-195.	2.4	28
58	Dyrk1A Positively Stimulates ASK1-JNK Signaling Pathway during Apoptotic Cell Death. Experimental Neurobiology, 2011, 20, 35-44.	0.7	27
59	PINK1 positively regulates IL- $1\hat{l}^2$ -mediated signaling through Tollip and IRAK1 modulation. Journal of Neuroinflammation, 2012, 9, 271.	3.1	27
60	cAMP-responding Element-binding Protein and c-Ets1 Interact in the Regulation of ATP-dependent MUC5AC Gene Expression. Journal of Biological Chemistry, 2008, 283, 26869-26878.	1.6	26
61	The serine protease HtrA2/Omi cleaves Parkin and irreversibly inactivates its E3 ubiquitin ligase activity. Biochemical and Biophysical Research Communications, 2009, 387, 537-542.	1.0	25
62	Formation of parkin aggregates and enhanced PINK1 accumulation during the pathogenesis of Parkinson's disease. Biochemical and Biophysical Research Communications, 2010, 393, 824-828.	1.0	23
63	Dyrk1A phosphorylates parkin at Serâ€131 and negatively regulates its ubiquitin E3 ligase activity. Journal of Neurochemistry, 2015, 134, 756-768.	2.1	23
64	Human Telomerase Reverse Transcriptase (hTERT) Positively Regulates 26S Proteasome Activity. Journal of Cellular Physiology, 2017, 232, 2083-2093.	2.0	23
65	The ubiquitin E3 ligase CHIP promotes proteasomal degradation of the serine/threonine protein kinase PINK1 during staurosporine-induced cell death. Journal of Biological Chemistry, 2018, 293, 1286-1297.	1.6	23
66	Expression of immediate early gene cyr61 during the differentiation of immortalized embryonic hippocampal neuronal cells. Neuroscience Letters, 1998, 255, 155-158.	1.0	22
67	Dequalinium-induced Protofibril Formation of α-Synuclein. Journal of Biological Chemistry, 2006, 281, 3463-3472.	1.6	22
68	Overexpression of DSCR1 blocks zinc-induced neuronal cell death through the formation of nuclear aggregates. Molecular and Cellular Neurosciences, 2007, 35, 585-595.	1.0	22
69	Small Ubiquitin-like Modifier (SUMO) Modification of Zinc Finger Protein 131 Potentiates Its Negative Effect on Estrogen Signaling. Journal of Biological Chemistry, 2012, 287, 17517-17529.	1.6	21
70	Direct Interaction and Functional Coupling between Human 5-HT6 Receptor and the Light Chain 1 Subunit of the Microtubule-Associated Protein 1B (MAP1B-LC1). PLoS ONE, 2014, 9, e91402.	1.1	21
71	A Systemic Administration of NMDA Induces Immediate Early Gene pip92 in the Hippocampus. Journal of Neurochemistry, 2001, 75, 9-17.	2.1	20
72	CREB activates proteasomal degradation of DSCR1/RCAN1. FEBS Letters, 2008, 582, 1889-1893.	1.3	20

#	Article	IF	CITATIONS
73	UHRF2, a Ubiquitin E3 Ligase, Acts as a Small Ubiquitin-like Modifier E3 Ligase for Zinc Finger Protein 131. Journal of Biological Chemistry, 2013, 288, 9102-9111.	1.6	20
74	Precise assembly and regulation of 26S proteasome and correlation between proteasome dysfunction and neurodegenerative diseases. BMB Reports, 2016, 49, 459-473.	1.1	20
75	Human telomerase reverse transcriptase positively regulates mitophagy by inhibiting the processing and cytoplasmic release of mitochondrial PINK1. Cell Death and Disease, 2020, 11, 425.	2.7	19
76	Intracellular Calcium Mobilization Induces Immediate Early Genepip92 via Src and Mitogen-activated Protein Kinase in Immortalized Hippocampal Cells. Journal of Biological Chemistry, 2001, 276, 2132-2138.	1.6	17
77	Interaction of SOCS3 with NonO attenuates IL- $1\hat{1}^2$ -dependent MUC8 gene expression. Biochemical and Biophysical Research Communications, 2008, 377, 946-951.	1.0	17
78	Down syndrome candidate region-1 protein interacts with Tollip and positively modulates interleukin-1 receptor-mediated signaling. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 1673-1680.	1.1	17
79	Covalent NEDD8 Conjugation Increases RCAN1 Protein Stability and Potentiates Its Inhibitory Action on Calcineurin. PLoS ONE, 2012, 7, e48315.	1.1	17
80	Leucine-rich repeat kinase 2 exacerbates neuronal cytotoxicity through phosphorylation of histone deacetylase 3 and histone deacetylation. Human Molecular Genetics, 2016, 26, ddw363.	1.4	17
81	Crystal Structure of Filamentous Aggregates of Human DJ-1 Formed in an Inorganic Phosphate-dependent Manner. Journal of Biological Chemistry, 2008, 283, 34069-34075.	1.6	16
82	Protein kinase A phosphorylates Down syndrome critical region 1 (RCAN1). Biochemical and Biophysical Research Communications, 2012, 418, 657-661.	1.0	16
83	The transcription factor STAT2 enhances proteasomal degradation of RCAN1 through the ubiquitin E3 ligase FBW7. Biochemical and Biophysical Research Communications, 2012, 420, 404-410.	1.0	16
84	PINK1 phosphorylates transglutaminase 2 and blocks its proteasomal degradation. Journal of Neuroscience Research, 2015, 93, 722-735.	1.3	16
85	Precise control of mitophagy through ubiquitin proteasome system and deubiquitin proteases and their dysfunction in Parkinson's disease. BMB Reports, 2021, 54, 592-600.	1.1	16
86	A novel role of hippocalcin in bFGFâ€induced neurite outgrowth of H19â€7 cells. Journal of Neuroscience Research, 2008, 86, 1557-1565.	1.3	15
87	Modulation of Cav3.1 T-type Ca2+ channels by the ran binding protein RanBPM. Biochemical and Biophysical Research Communications, 2009, 378, 15-20.	1.0	15
88	Ubiquitin-specific protease 22 (USP22) positively regulates RCAN1 protein levels through RCAN1 de-ubiquitination. Journal of Cellular Physiology, 2015, 230, 1651-1660.	2.0	15
89	Protein phosphatase PPM1B inhibits DYRK1A kinase through dephosphorylation of pS258 and reduces toxic tau aggregation. Journal of Biological Chemistry, 2021, 296, 100245.	1.6	15
90	Calpain-resistant fragment(s) of α-synuclein regulates the synuclein-cleaving activity of 20S proteasome. Archives of Biochemistry and Biophysics, 2006, 455, 40-47.	1.4	14

#	Article	IF	CITATIONS
91	Stilbene Derivatives as Human 5-HT6 Receptor Antagonists from the Root of Caragana sinica. Biological and Pharmaceutical Bulletin, 2010, 33, 2024-2028.	0.6	13
92	Reactive oxygen species mediate IL-8 expression in Down syndrome candidate region-1-overexpressed cells. International Journal of Biochemistry and Cell Biology, 2014, 55, 164-170.	1.2	13
93	Death-associated Protein Kinase 1 Phosphorylates α-Synuclein at Ser129 and Exacerbates Rotenone-induced Toxic Aggregation of α-Synuclein in Dopaminergic SH-SY5Y Cells. Experimental Neurobiology, 2020, 29, 207-218.	0.7	13
94	α-Synuclein enhances dopamine D2 receptor signaling. Brain Research, 2006, 1124, 5-9.	1.1	10
95	JNK- and Rac1-dependent induction of immediate early gene pip92 suppresses neuronal differentiation. Journal of Neurochemistry, 2007, 100, 555-566.	2.1	10
96	Histone Deacetylase 3 Promotes RCAN1 Stability and Nuclear Translocation. PLoS ONE, 2014, 9, e105416.	1.1	10
97	Down syndrome critical region 2 protein inhibits the transcriptional activity of peroxisome proliferator-activated receptor \hat{l}^2 in HEK293 cells. Biochemical and Biophysical Research Communications, 2008, 376, 478-482.	1.0	9
98	Estradiol Synthesis in Gut-Associated Lymphoid Tissue: Leukocyte Regulation by a Sexually Monomorphic System. Endocrinology, 2016, 157, 4579-4587.	1.4	9
99	Activation of adenylate cyclase by forskolin increases the protein stability of RCAN1 (DSCR1 or) Tj ETQq1 1 0.7	84314 rgB [*]	Г/Qverlock 1
100	Zinc finger protein 131 inhibits estrogen signaling by suppressing estrogen receptor \hat{l}_{\pm} homo-dimerization. Biochemical and Biophysical Research Communications, 2013, 430, 400-405.	1.0	8
101	FBXO7 triggers caspase 8-mediated proteolysis of the transcription factor FOXO4 and exacerbates neuronal cytotoxicity. Journal of Biological Chemistry, 2021, 297, 101426.	1.6	6
102	Waterâ€deprivationâ€induced expression of neuronal nitric oxide synthase in the hypothalamic paraventricular nucleus of rat. Journal of Neuroscience Research, 2008, 86, 1371-1379.	1.3	5
103	Novel biphasic effect of pyrrolidine dithiocarbamate on neuronal cell viability is mediated by the differential regulation of intracellular zinc and copper ion levels, NF- $\hat{\mathbb{I}}^{\mathbb{D}}$ b, and MAP kinases. , 2000, 59, 117.		2
104	Mitochondria and neurodegenerative diseases: Special issue of BMB Reports in 2020. BMB Reports, 2020, 53, 1-2.	1.1	2
105	Precise control of mitophagy through ubiquitin proteasome system and deubiquitin proteases and their dysfunction in Parkinson's disease. BMB Reports, 2021, , .	1.1	2