
Gustavo Aurelio Cifredo ChacÃ³n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9411140/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low temperature prepared copper-iron mixed oxides for the selective CO oxidation in the presence of hydrogen. Applied Catalysis A: General, 2018, 552, 58-69.	2.2	23
2	Use of pillared clays in the preparation of washcoated clay honeycomb monoliths as support of manganese catalysts for the total oxidation of VOCs. Catalysis Today, 2017, 296, 84-94.	2.2	24
3	Carbon integral honeycomb monoliths as support of copper catalysts in the Kharasch–Sosnovsky oxidation of cyclohexene. Chemical Engineering Journal, 2016, 290, 174-184.	6.6	7
4	Unveiling the source of activity of carbon integral honeycomb monoliths in the catalytic methane decomposition reaction. Catalysis Today, 2015, 249, 86-93.	2.2	20
5	A novel CoOx/La-modified-CeO2 formulation for powdered and washcoated onto cordierite honeycomb catalysts with application in VOCs oxidation. Applied Catalysis B: Environmental, 2014, 144, 425-434.	10.8	67
6	Experimental evidences of the relationship between reducibility and micro- and nanostructure in commercial high surface area ceria. Applied Catalysis A: General, 2014, 479, 35-44.	2.2	13
7	Resistance to Corrosion of Zirconia Coatings Deposited by Spray Pyrolysis in Nitrided Steel. Journal of Thermal Spray Technology, 2013, 22, 1242-1252.	1.6	10
8	Effect of different alumina dopants on the redox deactivation produced by structural modifications on CePrOx/Al2O3 systems. Catalysis Today, 2012, 180, 184-189.	2.2	8
9	Influence of the calcination temperature on the nano-structural properties, surface basicity, and catalytic behavior of alumina-supported lanthana samples. Journal of Catalysis, 2010, 272, 121-130.	3.1	81
10	Easy route to activate clay honeycomb monoliths for environmental applications. Applied Clay Science, 2010, 47, 392-399.	2.6	24
11	Easy extrusion of honeycomb-shaped monoliths using Moroccan natural clays and investigation of their dynamic adsorptive behavior towards VOCs. Journal of Hazardous Materials, 2009, 170, 87-95.	6.5	23
12	Origin of the redox deactivation phenomena in modified alumina-supported Ce/Pr mixed oxide. Surface and Interface Analysis, 2008, 40, 250-253.	0.8	10
13	Actual constitution of the mixed oxide promoter in a Rh/Ce1â^'xPrxO2â^'y/Al2O3 catalyst. Evolution throughout the preparation steps. Surface and Interface Analysis, 2008, 40, 242-245.	0.8	8
14	Original carbon-based honeycomb monoliths as support of Cu or Mn catalysts for low-temperature SCR of NO: Effects of preparation variables. Applied Catalysis A: General, 2008, 342, 150-158.	2.2	49
15	Physicochemical characterization and adsorptive properties of some Moroccan clay minerals extruded as lab-scale monoliths. Applied Clay Science, 2007, 36, 287-296.	2.6	22
16	Surface basicity of ceria-supported lanthana. Influence of the calcination temperature. Surface and Interface Analysis, 2006, 38, 229-233.	0.8	29
17	Study of the Structural Modifications Induced by Reducing Treatments on a Pd/Ce0.8Tb0.2O2-x/La2O3â~Al2O3Catalyst by Means of X-ray Diffraction and Electron Microscopy Techniques. Chemistry of Materials, 2002, 14, 1405-1410.	3.2	17
18	Investigation by Means of H2 Adsorption, Diffraction, and Electron Microscopy Techniques of a Cerium/Terbium Mixed Oxide Supported on a Lanthana-Modified Alumina. Chemistry of Materials, 2002, 14, 844-850.	3.2	26

GUSTAVO AURELIO CIFREDO

#	Article	IF	CITATIONS
19	Catalytic behavior of lanthana promoted Rh/SiO2 catalysts: influence of the preparation procedure. Applied Catalysis A: General, 2001, 208, 111-123.	2.2	24
20	XPS analysis and microstructural characterization of a Ce/Tb mixed oxide supported on a lanthana-modified transition alumina. Surface and Interface Analysis, 1999, 27, 941-949.	0.8	33
21	Title is missing!. Catalysis Letters, 1998, 53, 51-57.	1.4	35
22	Reducibility of ceria–lanthana mixed oxides under temperature programmed hydrogen and inert gas flow conditions. Journal of Alloys and Compounds, 1997, 250, 449-454.	2.8	41
23	Chemical and microstructural investigation of Pt/CeO2 catalysts reduced at temperatures ranging from 473 to 973 K. Catalysis Today, 1996, 29, 77-81.	2.2	20
24	HREM study of the behaviour of a Rh/CeO2 catalyst under high temperature reducing and oxidizing conditions. Catalysis Today, 1995, 23, 219-250.	2.2	134
25	The terbium oxide as support of highly dispersed metals. Study of the Rh/TbOx catalytic system. Journal of Alloys and Compounds, 1995, 225, 633-637.	2.8	5
26	Comments on "Redox Processes on Pure Ceria and Rh/CeO2 Catalyst Monitored by X-ray Absorption (Fast Acquisition Mode). The Journal of Physical Chemistry, 1995, 99, 11794-11796.	2.9	58
27	Influence of the nature of the metal precursor salt on the redox behaviour of ceria in Rh/CeO2 catalysts. Studies in Surface Science and Catalysis, 1995, 96, 419-429.	1.5	34
28	Study of the COCeO2 interaction in presence of highly dispersed rhodium. Journal of Molecular Catalysis, 1994, 89, 391-396.	1.2	14
29	Influence of the Reduction/Evacuation Conditions on the Rate of Hydrogen Spillover on Rh/CeO2 Catalysts. Langmuir, 1994, 10, 717-722.	1.6	76
30	Characterization of silica dispersed lanthana by CO2 adsorption. Journal of Alloys and Compounds, 1994, 207-208, 201-205.	2.8	5
31	Microstructure and catalytic properties of Rh and Ni dispersed on TiO2-SiO2 aerogels. Journal of Sol-Gel Science and Technology, 1994, 2, 831-836.	1.1	9
32	Metal-support interaction phenomena in rhodium/ceria and rhodium/titania catalysts: Comparative study by high-resolution transmission electron spectroscopy. Applied Catalysis A: General, 1993, 99, 1-8.	2.2	46
33	Ultrasound as a tool for the preparation of gels: effect on the textural properties of TiO2-SiO2 aerogels. Journal of Materials Science, 1993, 28, 2191-2195.	1.7	16
34	Hydrogen chemisorption on ceria: influence of the oxide surface area and degree of reduction. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 3499.	1.7	138
35	Microstructural and chemical properties of ceria-supported rhodium catalysts reduced at 773 K. The Journal of Physical Chemistry, 1993, 97, 4118-4123.	2.9	108
36	Preparation of rhodium catalysts dispersed on TiO2SiO2 aerogels. Journal of Non-Crystalline Solids, 1992, 147-148, 758-763.	1.5	30

#	Article	IF	CITATIONS
37	Preparation and characterization of a praseodymium oxide to be used as a catalytic support. Journal of Alloys and Compounds, 1992, 180, 271-279.	2.8	31
38	The key role of highly dispersed rhodium in the chemistry of hydrogen–ceria systems. Journal of the Chemical Society Chemical Communications, 1992, , 460-462.	2.0	30
39	Reversibility of hydrogen chemisorption on a ceria-supported rhodium catalyst. Journal of Catalysis, 1992, 137, 1-11.	3.1	129
40	HREM characterization of metal catalysts supported on rare-earth oxides: samarium oxide as support. Ultramicroscopy, 1990, 34, 60-65.	0.8	18