
Ke Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9410934/publications.pdf Version: 2024-02-01

KE VANC

#	Article	IF	CITATIONS
1	Fluoro-Polymer@BaTiO ₃ Hybrid Nanoparticles Prepared via RAFT Polymerization: Toward Ferroelectric Polymer Nanocomposites with High Dielectric Constant and Low Dielectric Loss for Energy Storage Application. Chemistry of Materials, 2013, 25, 2327-2338.	3.2	339
2	Hyperbranched-polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites. Journal of Materials Chemistry, 2012, 22, 7010.	6.7	235
3	Core@Double-Shell Structured BaTiO ₃ –Polymer Nanocomposites with High Dielectric Constant and Low Dielectric Loss for Energy Storage Application. Journal of Physical Chemistry C, 2013, 117, 22525-22537.	1.5	223
4	"Grafting to―route to PVDF-HFP-GMA/BaTiO3 nanocomposites with high dielectric constant and high thermal conductivity for energy storage and thermal management applications. Journal of Materials Chemistry A, 2014, 2, 5244.	5.2	200
5	Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density. Nanoscale, 2013, 5, 3847.	2.8	182
6	Combining RAFT Polymerization and Thiol–Ene Click Reaction for Core–Shell Structured Polymer@BaTiO ₃ Nanodielectrics with High Dielectric Constant, Low Dielectric Loss, and High Energy Storage Capability. ACS Applied Materials & Interfaces, 2014, 6, 1812-1822.	4.0	168
7	Core-shell Structured Hyperbranched Aromatic Polyamide/BaTiO ₃ Hybrid Filler for Poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) Nanocomposites with the Dielectric Constant Comparable to That of Percolative Composites. ACS Applied Materials & Interfaces. 2013. 5. 1747-1756.	4.0	161
8	Fluoro-polymer functionalized graphene for flexible ferroelectric polymer-based high-k nanocomposites with suppressed dielectric loss and low percolation threshold. Nanoscale, 2014, 6, 14740-14753.	2.8	142
9	Energy Storage in Ferroelectric Polymer Nanocomposites Filled with Core–Shell Structured Polymer@BaTiO ₃ Nanoparticles: Understanding the Role of Polymer Shells in the Interfacial Regions. ACS Applied Materials & Interfaces, 2014, 6, 19644-19654.	4.0	141
10	Strawberryâ€like Core–Shell Ag@Polydopamine@BaTiO ₃ Hybrid Nanoparticles for Highâ€ <i>k</i> Polymer Nanocomposites with High Energy Density and Low Dielectric Loss. Advanced Materials Interfaces, 2015, 2, 1500361.	1.9	141
11	Core–Shell Structured Polystyrene/BaTiO ₃ Hybrid Nanodielectrics Prepared by In Situ RAFT Polymerization: A Route to High Dielectric Constant and Low Loss Materials with Weak Frequency Dependence. Macromolecular Rapid Communications, 2012, 33, 1921-1926.	2.0	128
12	Role of interface in highly filled epoxy/BaTiO ₃ nanocomposites. Part I-correlation between nanoparticle surface chemistry and nanocomposite dielectric property. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21, 467-479.	1.8	60
13	Epoxy composites with high cross-plane thermal conductivity by constructing all-carbon multidimensional carbon fiber/graphite networks. Composites Science and Technology, 2021, 203, 108610.	3.8	60
14	Role of interface in highly filled epoxy/BaTiO ₃ nanocomposites. Part II- effect of nanoparticle surface chemistry on processing, thermal expansion, energy storage and breakdown strength of the nanocomposites. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21, 480-487.	1.8	43
15	Nanostructured electrical insulating epoxy thermosets with high thermal conductivity, high thermal stability, high glass transition temperatures and excellent dielectric properties. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22, 906-915.	1.8	36
16	Poly(vinylidene fluoride- <i>co</i> -hexafluoropropylene)-MXene Nanosheet Composites for Microcapacitors. ACS Applied Nano Materials, 2020, 3, 7992-8003.	2.4	34
17	Core–shell structured Ag@C nanocables for flexible ferroelectric polymer nanodielectric materials with low percolation threshold and excellent dielectric properties. RSC Advances, 2018, 8, 1-9.	1.7	33
18	Recent developments on epoxy-based syntactic foams for deep sea exploration. Journal of Materials Science, 2021, 56, 2037-2076.	1.7	29

Ke Yang

#	Article	IF	CITATIONS
19	Epoxy Composites with High Thermal Conductivity by Constructing Three-Dimensional Carbon Fiber/Carbon/Nickel Networks Using an Electroplating Method. ACS Omega, 2021, 6, 19238-19251.	1.6	27
20	Achieving highly thermal conductivity of polymer composites by adding hybrid silver–carbon fiber fillers. Composites Communications, 2022, 31, 101129.	3.3	23
21	Thermally Induced Swellability and Acid-Liable Dynamic Properties of Microgels of Copolymers Based on PECMA and Aldehyde-Functionalized Monomer. Macromolecules, 2010, 43, 9511-9521.	2.2	21
22	Facile Synthesis and Photo-Tunable Properties of a Photosensitive Polymer Whose Chromophores Bound with pH-Labile Cyclic Acetal Linkages. Macromolecules, 2008, 41, 4597-4606.	2.2	16
23	3D Thermal Network Supported by CF Felt for Improving the Thermal Performance of CF/C/Epoxy Composites. Polymers, 2021, 13, 980.	2.0	13
24	Switching preorganization and thermoresponsive behavior of a water-soluble polymer via light-tunable hydrogen bonding. Soft Matter, 2013, 9, 4036.	1.2	11
25	A new strategy for high-performance electromagnetic interference shielding by designing a layered double-percolated structure in PS/PVDF/MXene composites. European Polymer Journal, 2021, 151, 110450.	2.6	11
26	Development and Mechanical Characterization of HGMS–EHS-Reinforced Hollow Glass Bead Composites. ACS Omega, 2020, 5, 6725-6737.	1.6	10
27	Sequence control over thermo-triggered micellization and smart nanogels of copolymers based on PEGMA and aldehyde-functionalized monomer. Soft Matter, 2011, 7, 5861.	1.2	9
28	Preparation and Mechanical Properties of Carbon Fiber Reinforced Multiphase Epoxy Syntactic Foam (CF-R-Epoxy/HGMS/CFR-HEMS Foam). ACS Omega, 2020, 5, 14133-14146.	1.6	9
29	Epoxy composite with high thermal conductivity by constructing 3D-oriented carbon fiber and BN network structure. RSC Advances, 2021, 11, 25422-25430.	1.7	9
30	Enhanced dielectric constant and suppressed electrical conductivity in polymer nanocomposite films via loading MXene/TiO2/MoS2 nanosheets. Ceramics International, 2022, 48, 10447-10457.	2.3	9
31	High thermal conductivity and high impact strength of epoxy nanodielectrics with functionalized halloysite nanotubes. RSC Advances, 2016, 6, 69569-69579.	1.7	7
32	Polyethylene Glycol–Calcium Chloride Phase Change Materials with High Thermal Conductivity and Excellent Shape Stability by Introducing Three-Dimensional Carbon/Carbon Fiber Felt. ACS Omega, 2021, 6, 33033-33045.	1.6	7
33	Core-shell Structured Ag@PDA Nanowires and BT@PDA Nanoparticles for Three-phase Flexible Polymer Nanocomposites with Excellent Dielectric Properties. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28, 1909-1916.	1.8	5
34	Efficient Gold–Palladium Nanoparticles Stabilized by Poly(amic acid) Salt: Synthesis and Application in Catalytic Oxidation of Amines to Imines. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 1384-1392.	1.9	4
35	Carbon Fiber Reinforced Multi-Phase Epoxy Syntactic Foam (CFR-Epoxy-Hardener/HGMS/Aerogel-R-Hollow Epoxy Macrosphere(AR-HEMS)). Polymers, 2021, 13, 683.	2.0	4
36	Poly (amic acid) Saltâ€stabilized Auâ€Ag Alloy Nanoparticles as Efficient and Recyclable Quasiâ€homogeneous Catalysts for the Imines Synthesis from Alcohols and Amines in Water. ChemistrySelect, 2019, 4, 10401-10407.	0.7	3

Ke Yang

#	Article	IF	CITATIONS
37	High thermal conductivity and low leakage phase change materials filled with three-dimensional carbon fiber network. Fullerenes Nanotubes and Carbon Nanostructures, 0, , 1-10.	1.0	3
38	A study of preparation and properties of epoxy resin/carbon fiber/phenolic residual carbon composites with adjustable negative permittivity behavior. Fullerenes Nanotubes and Carbon Nanostructures, 2022, 30, 675-682.	1.0	3
39	Modulating structural stability and acid sensitivity of photosensitive polymer micelles simply via oneâ€batch UV irradiation. Journal of Polymer Science Part A, 2012, 50, 2878-2888.	2.5	2
40	Fabrication and Study on Thermal Conductivity, Electrical Properties, and Mechanical Properties of the Lightweight Carbon/Carbon Fiber Composite. Journal of Chemistry, 2020, 2020, 1-15.	0.9	1
41	"Grafting to"D route to high-k and low-loss PS@BaTiO <inf>3</inf> nanocomposites for energy storage applications. , 2015, , .		0
42	Fabrication and Mechanical Performance of Glass Fiber Reinforced, Threeâ€phase, Epoxy Syntactic Foam. ChemistrySelect, 2022, 7, .	0.7	0