

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9410893/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Pathophysiological Significance of WDR62 and JNK Signaling in Human Diseases. Frontiers in Cell and<br>Developmental Biology, 2021, 9, 640753.                                                                                  | 1.8 | 6         |
| 2  | WDR62 is required for centriole duplication in spermatogenesis and manchette removal in spermiogenesis. Communications Biology, 2021, 4, 645.                                                                                   | 2.0 | 5         |
| 3  | TDP-43 Mutation Affects Stress Granule Dynamics in Differentiated NSC-34 Motoneuron-Like Cells.<br>Frontiers in Cell and Developmental Biology, 2021, 9, 611601.                                                                | 1.8 | 19        |
| 4  | Cilia, Centrosomes and Skeletal Muscle. International Journal of Molecular Sciences, 2021, 22, 9605.                                                                                                                            | 1.8 | 10        |
| 5  | Cep55 regulation of PI3K/Akt signaling is required for neocortical development and ciliogenesis. PLoS<br>Genetics, 2021, 17, e1009334.                                                                                          | 1.5 | 4         |
| 6  | The association of microcephaly protein WDR62 with CPAP/IFT88 is required for cilia formation and neocortical development. Human Molecular Genetics, 2020, 29, 248-263.                                                         | 1.4 | 31        |
| 7  | The Spindle-Associated Microcephaly Protein, WDR62, Is Required for Neurogenesis and Development of the Hippocampus. Frontiers in Cell and Developmental Biology, 2020, 8, 549353.                                              | 1.8 | 6         |
| 8  | Elevated levels of Drosophila Wdr62 promote glial cell growth and proliferation through AURKA<br>signalling to AKT and MYC. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118713.                        | 1.9 | 8         |
| 9  | Quantitative proteomic analyses of dynamic signalling events in cortical neurons undergoing excitotoxic cell death. Cell Death and Disease, 2019, 10, 213.                                                                      | 2.7 | 16        |
| 10 | Pathogenic E2K mutation of doublecortin X (DCX) alters microtubule stabilisation and actin filament association. Biochemical and Biophysical Research Communications, 2019, 513, 540-545.                                       | 1.0 | 1         |
| 11 | Doublecortin X (DCX) serine 28 phosphorylation is a regulatory switch, modulating association of<br>DCX with microtubules and actin filaments. Biochimica Et Biophysica Acta - Molecular Cell Research,<br>2019, 1866, 638-649. | 1.9 | 9         |
| 12 | Protection against reperfusion injury by 3′,4′-dihydroxyflavonol in rat isolated hearts involves<br>inhibition of phospholamban and JNK2. International Journal of Cardiology, 2018, 254, 265-271.                              | 0.8 | 10        |
| 13 | Factors that influence adult neurogenesis as potential therapy. Translational Neurodegeneration, 2018, 7, 4.                                                                                                                    | 3.6 | 134       |
| 14 | The Role of WD40-Repeat Protein 62 (MCPH2) in Brain Growth: Diverse Molecular and Cellular<br>Mechanisms Required for Cortical Development. Molecular Neurobiology, 2018, 55, 5409-5424.                                        | 1.9 | 27        |
| 15 | Flavonols and Flavones – Protecting Against Myocardial Ischemia/ Reperfusion Injury by Targeting<br>Protein Kinases. Current Medicinal Chemistry, 2018, 25, 4402-4415.                                                          | 1.2 | 9         |
| 16 | MEKK3 coordinates with FBW7 to regulate WDR62 stability and neurogenesis. PLoS Biology, 2018, 16, e2006613.                                                                                                                     | 2.6 | 14        |
| 17 | Stathmin mediates neuroblastoma metastasis in a tubulin-independent manner via RhoA/ROCK signaling and enhanced transendothelial migration. Oncogene, 2017, 36, 501-511.                                                        | 2.6 | 25        |
| 18 | Dynamic microtubule association of Doublecortin X (DCX) is regulated by its C-terminus. Scientific Reports, 2017, 7, 5245.                                                                                                      | 1.6 | 15        |

D C Ng

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Glial-Specific Functions of Microcephaly Protein WDR62 and Interaction with the Mitotic Kinase<br>AURKA Are Essential for Drosophila Brain Growth. Stem Cell Reports, 2017, 9, 32-41.                                         | 2.3 | 29        |
| 20 | WDR62 Regulates Early Neural and Clial Progenitor Specification of Human Pluripotent Stem Cells.<br>Stem Cells International, 2017, 2017, 1-9.                                                                                | 1.2 | 11        |
| 21 | A beacon of hope in stroke therapy—Blockade of pathologically activated cellular events in excitotoxic neuronal death as potential neuroprotective strategies. , 2016, 160, 159-179.                                          |     | 35        |
| 22 | Aurora A phosphorylation of WD40-repeat protein 62 in mitotic spindle regulation. Cell Cycle, 2016, 15, 413-424.                                                                                                              | 1.3 | 26        |
| 23 | Opposing roles for JNK and Aurora A in regulating WD40-Repeat Protein 62 association with spindle microtubules. Journal of Cell Science, 2015, 128, 527-40.                                                                   | 1.2 | 41        |
| 24 | Evidence that the MEK/ERK but not the PI3K/Akt pathway is required for protection from myocardial<br>ischemia–reperfusion injury by 3′,4′-dihydroxyflavonol. European Journal of Pharmacology, 2015, 758,<br>53-59.           | 1.7 | 21        |
| 25 | Loss of miR-223 and JNK Signaling Contribute to Elevated Stathmin in Malignant Pleural Mesothelioma.<br>Molecular Cancer Research, 2015, 13, 1106-1118.                                                                       | 1.5 | 44        |
| 26 | Cardiac CaMKIIδ splice variants exhibit target signaling specificity and confer sex-selective<br>arrhythmogenic actions in the ischemic-reperfused heart. International Journal of Cardiology, 2015,<br>181, 288-296.         | 0.8 | 27        |
| 27 | Dual role of Src kinase in governing neuronal survival. Brain Research, 2015, 1594, 1-14.                                                                                                                                     | 1.1 | 15        |
| 28 | cAMP-dependent Protein Kinase and c-Jun N-terminal Kinase Mediate Stathmin Phosphorylation for the<br>Maintenance of Interphase Microtubules during Osmotic Stress. Journal of Biological Chemistry,<br>2014, 289, 2157-2169. | 1.6 | 20        |
| 29 | Differences in c-Jun N-terminal kinase recognition and phosphorylation of closely related stathmin-family members. Biochemical and Biophysical Research Communications, 2014, 446, 248-254.                                   | 1.0 | 17        |
| 30 | Intracellular mobility and nuclear trafficking of the stress-activated kinase JNK1 are impeded by<br>hyperosmotic stress. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 253-264.                       | 1.9 | 10        |
| 31 | Identification and characterization of bi-thiazole-2,2′-diamines as kinase inhibitory scaffolds.<br>Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1077-1088.                                           | 1.1 | 8         |
| 32 | Cardioprotective 3′,4′-dihydroxyflavonol attenuation of JNK and p38MAPK signalling involves CaMKII<br>inhibition. Biochemical Journal, 2013, 456, 149-161.                                                                    | 1.7 | 22        |
| 33 | A Truncated Fragment of Src Protein Kinase Generated by Calpain-mediated Cleavage Is a Mediator of<br>Neuronal Death in Excitotoxicity. Journal of Biological Chemistry, 2013, 288, 9696-9709.                                | 1.6 | 42        |
| 34 | Selective STAT3-Î $\pm$ or -Î <sup>2</sup> expression reveals spliceform-specific phosphorylation kinetics, nuclear retention and distinct gene expression outcomes. Biochemical Journal, 2012, 447, 125-136.                 | 1.7 | 48        |
| 35 | WD40-repeat protein 62 is a JNK-phosphorylated spindle pole protein required for spindle maintenance and timely mitotic progression Journal of Cell Science, 2012, 125, 5096-109.                                             | 1.2 | 69        |
| 36 | Tracking protein aggregation and mislocalization in cells with flow cytometry. Nature Methods, 2012, 9, 467-470.                                                                                                              | 9.0 | 111       |

D C Ng

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Stathmin and Cancer. , 2012, , 259-284.                                                                                                                                                                                                                         |     | 1         |
| 38 | Characterization of a novel JNK (c-Jun N-terminal kinase) inhibitory peptide. Biochemical Journal, 2011,<br>434, 399-413.                                                                                                                                       | 1.7 | 27        |
| 39 | Cardioprotection from ischaemia–reperfusion injury by a novel flavonol that reduces activation of p38 MAPK. European Journal of Pharmacology, 2011, 658, 160-167.                                                                                               | 1.7 | 26        |
| 40 | C-Jun N-terminal kinase controls TDP-43 accumulation in stress granules induced by oxidative stress.<br>Molecular Neurodegeneration, 2011, 6, 57.                                                                                                               | 4.4 | 103       |
| 41 | Phosphoinositide 3-Kinase (PI3K(p110α)) Directly Regulates Key Components of the Z-disc and Cardiac<br>Structure*. Journal of Biological Chemistry, 2011, 286, 30837-30846.                                                                                     | 1.6 | 32        |
| 42 | Opposing Actions of Extracellular Signal-regulated Kinase (ERK) and Signal Transducer and Activator<br>of Transcription 3 (STAT3) in Regulating Microtubule Stabilization during Cardiac Hypertrophy.<br>Journal of Biological Chemistry, 2011, 286, 1576-1587. | 1.6 | 24        |
| 43 | c-Jun N-terminal kinase/c-Jun inhibits fibroblast proliferation by negatively regulating the levels of stathmin/oncoprotein 18. Biochemical Journal, 2010, 430, 345-354.                                                                                        | 1.7 | 21        |
| 44 | c-Jun N-terminal kinase (JNK) signaling: Recent advances and challenges. Biochimica Et Biophysica Acta -<br>Proteins and Proteomics, 2010, 1804, 463-475.                                                                                                       | 1.1 | 257       |
| 45 | c-Jun N-terminal Kinase Phosphorylation of Stathmin Confers Protection against Cellular Stress.<br>Journal of Biological Chemistry, 2010, 285, 29001-29013.                                                                                                     | 1.6 | 30        |
| 46 | SCG10-like protein (SCLIP) is a STAT3-interacting protein involved in maintaining epithelial morphology in MCF-7 breast cancer cells. Biochemical Journal, 2010, 425, 95-108.                                                                                   | 1.7 | 11        |
| 47 | Stat3 promotes directional cell migration by regulating Rac1 activity via its activator βPIX. Journal of Cell Science, 2009, 122, 4150-4159.                                                                                                                    | 1.2 | 84        |
| 48 | Myoseverin disrupts sarcomeric organization in myocytes: An effect independent of microtubule assembly inhibition. Cytoskeleton, 2008, 65, 40-58.                                                                                                               | 4.4 | 9         |
| 49 | Severe Heart Failure and Early Mortality in a Double-Mutation Mouse Model of Familial Hypertrophic Cardiomyopathy. Circulation, 2008, 117, 1820-1831.                                                                                                           | 1.6 | 71        |
| 50 | Stat3 regulates microtubules by antagonizing the depolymerization activity of stathmin. Journal of Cell Biology, 2006, 172, 245-257.                                                                                                                            | 2.3 | 241       |
| 51 | Small G-protein Rho is involved in the maintenance of cardiac myocyte morphology. Journal of<br>Cellular Biochemistry, 2005, 95, 529-542.                                                                                                                       | 1.2 | 9         |
| 52 | GRIM-19, a Cell Death Regulatory Protein, Is Essential for Assembly and Function of Mitochondrial<br>Complex I. Molecular and Cellular Biology, 2004, 24, 8447-8456.                                                                                            | 1.1 | 182       |
| 53 | Activation of signal transducer and activator of transcription (STAT) pathways in failing human hearts. Cardiovascular Research, 2003, 57, 333-346.                                                                                                             | 1.8 | 51        |
| 54 | Taking the Cell by Stealth or Storm? Protein Transduction Domains (PTDs) as Versatile Vectors for Delivery. DNA and Cell Biology, 2002, 21, 879-894.                                                                                                            | 0.9 | 38        |

D C Ng

| #  | Article                                                                                                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A Role for the Extracellular Signal-regulated Kinase and p38 Mitogen-activated Protein Kinases in<br>Interleukin-1Î <sup>2</sup> -stimulated Delayed Signal Tranducer and Activator of Transcription 3 Activation, Atrial<br>Natriuretic Factor Expression, and Cardiac Myocyte Morphology. Journal of Biological Chemistry,<br>2001, 276, 29490-29498. | 1.6 | 65        |
| 56 | The Mechanism of Heat Shock Activation of ERK Mitogen-activated Protein Kinases in the Interleukin<br>3-dependent ProB Cell Line BaF3. Journal of Biological Chemistry, 2000, 275, 40856-40866.                                                                                                                                                         | 1.6 | 41        |
| 57 | Intact Mitochondrial Electron Transport Function is Essential for Signalling by Hydrogen Peroxide in<br>Cardiac Myocytes. Journal of Molecular and Cellular Cardiology, 2000, 32, 1469-1480.                                                                                                                                                            | 0.9 | 55        |
| 58 | Neural regulation of the formation of skeletal muscle phosphorylase kinase holoenzyme in adult and developing rat muscle. Biochemical Journal, 1997, 325, 793-800.                                                                                                                                                                                      | 1.7 | 6         |
| 59 | Parkinson's disease. Diagnosis and treatment. Western Journal of Medicine, 1996, 165, 234-40.                                                                                                                                                                                                                                                           | 0.3 | 6         |