Ilsoon Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9410755/publications.pdf

Version: 2024-02-01

159585 189892 2,696 69 30 50 h-index citations g-index papers 71 71 71 3966 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Fabrication of poly(lactic acid) nano―and microparticles using a nanomixer via nanoprecipitation or emulsion diffusion. Journal of Applied Polymer Science, 2018, 135, 46199.	2.6	12
2	Single-cell membrane drug delivery using porous pen nanodeposition. Nanoscale, 2018, 10, 12704-12712.	5.6	8
3	Role of clays in fouling-resistant clay-embedded polyelectrolyte multilayer membranes for wastewater effluent treatment. Separation Science and Technology, 2017, 52, 2108-2119.	2.5	2
4	Adsorption and interlayer diffusion controlled growth and unique surface patterned growth of polyelectrolyte multilayers. Polymer, 2017, 109, 297-306.	3.8	18
5	Encapsulation of hydrophobic or hydrophilic iron oxide nanoparticles into poly(lactic acid) micro/nanoparticles via adaptable emulsion setup. Journal of Applied Polymer Science, 2016, 133, .	2.6	1
6	Multi-layer coated nanorobot end-effector for efficient drug delivery. , 2016, , .		0
7	Designing fouling-resistant clay-embedded polyelectrolyte multilayer membranes for wastewater effluent treatment. Journal of Membrane Science, 2016, 512, 21-28.	8.2	30
8	Synchronous Generation of Nano- and Microscaled Hierarchical Porous Polyelectrolyte Multilayers for Superwettable Surfaces. Langmuir, 2016, 32, 8494-8500.	3.5	13
9	Amperometric Detection and Quantification of Nitrate Ions Using a Highly Sensitive Nanostructured Membrane Electrocodeposited Biosensor Array. Electroanalysis, 2015, 27, 1127-1137.	2.9	32
10	Development of Layered Multiscale Porous Thin Films by Tuning Deposition Time and Molecular Weight of Polyelectrolytes. Macromolecular Rapid Communications, 2015, 36, 1669-1674.	3.9	10
11	Design of ultrathin nanostructured polyelectrolyte-based membranes with high perchlorate rejection and high permeability. Separation and Purification Technology, 2015, 145, 113-119.	7.9	40
12	Development of polyelectrolyte multilayer membranes to reduce the COD level of electrocoagulation treated high-strength wastewater. Journal of Membrane Science, 2015, 496, 259-266.	8.2	17
13	Modeling and simulation of the quasi-static compressive behavior of Al/Cu hybrid open-cell foams. International Journal of Solids and Structures, 2015, 54, 135-146.	2.7	26
14	Recent Advances in the Fabrication of Nanostructured Barrier Films. Journal of Nanoscience and Nanotechnology, 2014, 14, 2157-2177.	0.9	22
15	Effect of annealing on the mechanical properties of nano-copper reinforced open-cell aluminum foams. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 613, 340-351.	5.6	17
16	Dynamic encapsulation of hydrophilic nisin in hydrophobic poly (lactic acid) particles with controlled morphology by a single emulsion process. Journal of Colloid and Interface Science, 2014, 423, 85-93.	9.4	18
17	Compressive behavior of aluminum/copper hybrid foams under high strain rate loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 592, 111-120.	5.6	35
18	Recent Progress in the Applications of Layer-By-Layer Assembly to the Preparation of Nanostructured Ion-Rejecting Water Purification Membranes. Journal of Nanoscience and Nanotechnology, 2014, 14, 2178-2189.	0.9	32

#	Article	IF	CITATIONS
19	A facile method of nickel electroless deposition on various neutral hydrophobic polymer surfaces. Applied Surface Science, 2013, 283, 309-320.	6.1	34
20	Immobilization of cellulase on magnetoresponsive graphene nano-supports. Journal of Molecular Catalysis B: Enzymatic, 2013, 90, 76-86.	1.8	102
21	Impact of cationic polyelectrolyte on the nanoshear hybrid alkaline pretreatment of corn stover: Morphology and saccharification study. Bioresource Technology, 2013, 133, 45-50.	9.6	24
22	Nano-deposition on 3-D open-cell aluminum foam materials for improved energy absorption capacity. Materials Science & Department of the Materials of the Materi	5.6	28
23	Molecular Self-Assembly: Smart Design of Surface and Interface via Secondary Molecular Interactions. Langmuir, 2013, 29, 2476-2489.	3.5	43
24	Carbon nanotubes tuned foam structures as novel nanostructured biocarriers for lignocellulose hydrolysis. Biotechnology Letters, 2013, 35, 181-188.	2.2	7
25	Conductive oxygen barrier films using supramolecular assembly of graphene embedded polyelectrolyte multilayers. Journal of Colloid and Interface Science, 2013, 409, 219-226.	9.4	17
26	Fast and efficient nanoshear hybrid alkaline pretreatment of corn stover for biofuel and materials production. Biomass and Bioenergy, 2013, 51, 35-42.	5.7	31
27	Enzyme production by the mixed fungal culture with nanoâ€shear pretreated biomass and lignocellulose hydrolysis. Biotechnology and Bioengineering, 2013, 110, 2123-2130.	3.3	12
28	Recent Progress in the Development of Novel Nanostructured Biosensors for Detection of Waterborne Contaminants. Lecture Notes in Nanoscale Science and Technology, 2013, , 1-34.	0.8	0
29	Time Controlled Release of Arabinofuranosylcytosine (Ara-C) from Agarose Hydrogels using Layer-by-Layer Assembly: An In Vitro Study. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 439-463.	3.5	16
30	Cellulase Immobilized Nanostructured Supports for Efficient Saccharification of Cellulosic Substrates. Topics in Catalysis, 2012, 55, 1231-1246.	2.8	27
31	Transitional behavior of polymeric hollow microsphere formation in turbulent shear flow by emulsion diffusion method. Polymer, 2012, 53, 205-212.	3.8	23
32	Polyelectrolyte Multilayer Stamping in Aqueous Phase and Non-Contact Mode. Industrial & Description of Engineering Chemistry Research, 2011, 50, 8851-8858.	3.7	5
33	Identification of a Novel Benzimidazole That Inhibits Bacterial Biofilm Formation in a Broad-Spectrum Manner. Antimicrobial Agents and Chemotherapy, 2011, 55, 4369-4378.	3.2	92
34	Time Controlled Protein Release from Layerâ€byâ€Layer Assembled Multilayer Functionalized Agarose Hydrogels. Advanced Functional Materials, 2010, 20, 247-258.	14.9	94
35	Theoretical and experimental study of bi-enzyme electrodes with substrate recycling. Journal of Electroanalytical Chemistry, 2010, 641, 104-110.	3.8	10
36	Stable Aqueous Suspension and Self-Assembly of Graphite Nanoplatelets Coated with Various Polyelectrolytes. Journal of Nanomaterials, 2010, 2010, 1-11.	2.7	15

#	Article	IF	Citations
37	Buckling in nanomechanical films. Soft Matter, 2010, 6, 3701.	2.7	46
38	Cell Adhesive Behavior on Thin Polyelectrolyte Multilayers: Cells Attempt to Achieve Homeostasis of Its Adhesion Energy. Langmuir, 2010, 26, 12794-12802.	3.5	47
39	Multilayer mediated forward and patterned siRNA transfection using linear-PEI at extended N/P ratios. Acta Biomaterialia, 2009, 5, 1474-1488.	8.3	54
40	Primary Neuron/Astrocyte Coâ€Culture on Polyelectrolyte Multilayer Films: A Template for Studying Astrocyteâ€Mediated Oxidative Stress in Neurons. Advanced Functional Materials, 2008, 18, 294-301.	14.9	46
41	Intact Pattern Transfer of Conductive Exfoliated Graphite Nanoplatelet Composite Films to Polyelectrolyte Multilayer Platforms. Advanced Materials, 2008, 20, 2008-2012.	21.0	59
42	Versatile bioelectronic interfaces on flexible non-conductive substrates. Biosensors and Bioelectronics, 2008, 23, 1481-1487.	10.1	11
43	Nanometal-Decorated Exfoliated Graphite Nanoplatelet Based Glucose Biosensors with High Sensitivity and Fast Response. ACS Nano, 2008, 2, 1825-1832.	14.6	421
44	Tunable Resistive m-dPEG Acid Patterns on Polyelectrolyte Multilayers at Physiological Conditions: Template for Directed Deposition of Biomacromolecules. Langmuir, 2008, 24, 224-230.	3.5	14
45	Step-edge like template fabrication of polyelectrolyte supported nickel nanowires. Nanotechnology, 2007, 18, 245305.	2.6	13
46	Renewable Dehydrogenase-Based Interfaces for Bioelectronic Applications. Langmuir, 2007, 23, 7127-7133.	3.5	36
47	Wrinkle-Free Nanomechanical Film:Â Control and Prevention of Polymer Film Buckling. Nano Letters, 2007, 7, 372-379.	9.1	82
48	Effects of Catalyst Introduction Methods Using PAMAM Dendrimers on Selective Electroless Nickel Deposition on Polyelectrolyte Multilayers. Langmuir, 2007, 23, 7404-7410.	3.5	35
49	Nanostructured Biosensor for Measuring Neuropathy Target Esterase Activity. Analytical Chemistry, 2007, 79, 5196-5203.	6.5	27
50	Cell Adhesion on Polyelectrolyte Multilayer Coated Polydimethylsiloxane Surfaces with Varying Topographies. Tissue Engineering, 2007, 13, 2105-2117.	4.6	73
51	Simple Fabrication of a Highly Sensitive Glucose Biosensor Using Enzymes Immobilized in Exfoliated Graphite Nanoplatelets Nafion Membrane. Chemistry of Materials, 2007, 19, 6240-6246.	6.7	198
52	Control of Specular and Diffuse Reflection of Light Using Particle Selfâ€Assembly at the Polymer and Metal Interface. Advanced Functional Materials, 2007, 17, 3619-3625.	14.9	23
53	Patterned Co-Culture of Primary Hepatocytes and Fibroblasts Using Polyelectrolyte Multilayer Templates. Macromolecular Bioscience, 2007, 7, 344-353.	4.1	71
54	Direct Transfer of Preformed Patterned Bio-Nanocomposite Films on Polyelectrolyte Multilayer Templates. Macromolecular Bioscience, 2007, 7, 789-797.	4.1	15

#	Article	IF	CITATIONS
55	Tethered Lipid Bilayers on Electrolessly Deposited Gold for Bioelectronic Applications. Biomacromolecules, 2006, 7, 3327-3335.	5.4	20
56	Arrays of lipid bilayers and liposomes on patterned polyelectrolyte templates. Journal of Colloid and Interface Science, 2006, 301, 461-469.	9.4	26
57	A versatile approach to selective and inexpensive copper patterns using polyelectrolyte multilayer coatings. Thin Solid Films, 2006, 515, 2347-2352.	1.8	19
58	Nanorice and Nanospears from Polymer Nanospheres. Advanced Materials, 2006, 18, 2471-2475.	21.0	21
59	Self-assembled particle monolayers on polyelectrolyte multilayers: particle size effects on formation, structure, and optical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 259, 45-53.	4.7	58
60	Intact transfer of layered, bionanocomposite arrays by microcontact printing. Chemical Communications, 2005, , 316-318.	4.1	21
61	Nanostructured Crosslinkable Micropatterns by Amphiphilic Dendrimer Stamping. Macromolecular Rapid Communications, 2004, 25, 935-941.	3.9	25
62	Patterned and Controlled Polyelectrolyte Fractal Growth and Aggregations. Langmuir, 2004, 20, 2478-2483.	3.5	32
63	Controlling Primary Hepatocyte Adhesion and Spreading on Protein-Free Polyelectrolyte Multilayer Films. Journal of the American Chemical Society, 2004, 126, 16286-16287.	13.7	69
64	Selective Depositions on Polyelectrolyte Multilayers:Â Self-Assembled Monolayers of m-dPEG Acid as Molecular Template. Journal of the American Chemical Society, 2004, 126, 4697-4703.	13.7	46
65	Selective Electroless Nickel Plating of Particle Arrays on Polyelectrolyte Multilayers. Chemistry of Materials, 2003, 15, 4583-4589.	6.7	68
66	Thermodynamic analysis of polymer-solid adhesion: Sticker and receptor group effects. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2343-2353.	2.1	23
67	Optimum Polymer - Solid Interface Design for Adhesion Strength: Carboxylation of Polybutadiene and Mixed Silanes Surface Modification of Aluminum Oxide. Journal of Adhesion, 2001, 75, 299-324.	3.0	10
68	Controlling amine receptor group density on aluminum oxide surfaces by mixed silane self assembly. Thin Solid Films, 2000, 379, 94-100.	1.8	37
69	Polymer Adhesion vs Substrate Receptor Group Density. Macromolecules, 2000, 33, 2680-2687.	4.8	37