

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9410619/publications.pdf Version: 2024-02-01

Νινα δα

#	Article	IF	CITATIONS
1	A Simple Cl [–] -Free Electrolyte Based on Magnesium Nitrate for Magnesium–Sulfur Battery Applications. ACS Applied Energy Materials, 2022, 5, 2260-2269.	5.1	24
2	<i>In Situ</i> Probing of Mass Exchange at the Solid Electrolyte Interphase in Aqueous and Nonaqueous Zn Electrolytes with EQCM-D. ACS Applied Materials & amp; Interfaces, 2021, 13, 10131-10140.	8.0	16
3	A Systematic Electrochemical Investigation of a Dimethylamine Cosolvent-Assisted Nonaqueous Zinc(II) Bis(trifluoromethylsulfonyl)imide Electrolyte. Journal of the Electrochemical Society, 2021, 168, 030516.	2.9	5
4	Investigating Ternary Li–Mg–Si Zintl Phase Formation and Evolution for Si Anodes in Li-Ion Batteries with Mg(TFSI) ₂ Electrolyte Additive. Chemistry of Materials, 2021, 33, 4960-4970.	6.7	10
5	A Simple Halogen-Free Magnesium Electrolyte for Reversible Magnesium Deposition through Cosolvent Assistance. ACS Applied Materials & Interfaces, 2020, 12, 10252-10260.	8.0	31
6	Direct observation of MgO formation at cathode electrolyte interface of a spinel MgCo2O4 cathode upon electrochemical Mg removal and insertion. Journal of Power Sources, 2019, 424, 68-75.	7.8	12
7	Synthesis and Characterization of MgCr ₂ S ₄ Thiospinel as a Potential Magnesium Cathode. Inorganic Chemistry, 2018, 57, 8634-8638.	4.0	50
8	Direct Investigation of Mg Intercalation into the Orthorhombic V ₂ O ₅ Cathode Using Atomic-Resolution Transmission Electron Microscopy. Chemistry of Materials, 2017, 29, 2218-2226.	6.7	62
9	In Situ NMR Observation of the Temporal Speciation of Lithium Sulfur Batteries during Electrochemical Cycling. Journal of Physical Chemistry C, 2017, 121, 6011-6017.	3.1	43
10	Aberration corrected STEM and High Resolution EELS study Investigating Magnesium Intercalation in Vanadium Pentoxide Cathode. Microscopy and Microanalysis, 2016, 22, 1318-1319.	0.4	0
11	Advanced hybrid battery with a magnesium metal anode and a spinel LiMn ₂ O ₄ cathode. Chemical Communications, 2016, 52, 9961-9964.	4.1	50
12	Concentration dependent electrochemical properties and structural analysis of a simple magnesium electrolyte: magnesium bis(trifluoromethane sulfonyl)imide in diglyme. RSC Advances, 2016, 6, 113663-113670.	3.6	65
13	Is alpha-V2O5 a cathode material for Mg insertion batteries?. Journal of Power Sources, 2016, 323, 44-50.	7.8	108
14	Structural Evolution of Reversible Mg Insertion into a Bilayer Structure of V ₂ O ₅ · <i>n</i> H ₂ O Xerogel Material. Chemistry of Materials, 2016, 28, 2962-2969.	6.7	97
15	Nickel hexacyanoferrate, a versatile intercalation host for divalent ions from nonaqueous electrolytes. Journal of Power Sources, 2016, 325, 646-652.	7.8	90
16	MgCl ₂ : The Key Ingredient to Improve Chloride Containing Electrolytes for Rechargeable Magnesium-Ion Batteries. Journal of the Electrochemical Society, 2016, 163, A1672-A1677.	2.9	53
17	Role of Chloride for a Simple, Non-Grignard Mg Electrolyte in Ether-Based Solvents. ACS Applied Materials & Interfaces, 2016, 8, 16002-16008.	8.0	108
18	Phase-Controlled Electrochemical Activity of Epitaxial Mg-Spinel Thin Films. ACS Applied Materials & Interfaces, 2015, 7, 28438-28443.	8.0	56

Niya Sa

#	Article	IF	CITATIONS
19	The Coupling between Stability and Ion Pair Formation in Magnesium Electrolytes from First-Principles Quantum Mechanics and Classical Molecular Dynamics. Journal of the American Chemical Society, 2015, 137, 3411-3420.	13.7	259
20	Nanopipette delivery: influence of surface charge. Analyst, The, 2015, 140, 4835-4842.	3.5	33
21	The unexpected discovery of the Mg(HMDS) ₂ /MgCl ₂ complex as a magnesium electrolyte for rechargeable magnesium batteries. Journal of Materials Chemistry A, 2015, 3, 6082-6087.	10.3	137
22	Electrospray Ionization from Nanopipette Emitters with Tip Diameters of Less than 100 nm. Analytical Chemistry, 2013, 85, 8498-8502.	6.5	75
23	Rectification of Ion Current in Nanopipettes by External Substrates. ACS Nano, 2013, 7, 11272-11282.	14.6	111
24	Experiment and Simulation of Ion Transport through Nanopipettes of Well-Defined Conical Geometry. Journal of the Electrochemical Society, 2013, 160, H376-H381.	2.9	35
25	Rectification of Nanopores at Surfaces. Journal of the American Chemical Society, 2011, 133, 10398-10401.	13.7	80
26	Reversible Cobalt Ion Binding to Imidazole-Modified Nanopipettes. Analytical Chemistry, 2010, 82, 9963-9966.	6.5	61
27	Bonding analysis and stability on alternant B16N16 cage and its dimers. Journal of Molecular Modeling, 2008, 14, 789-795.	1.8	28
28	Theoretical study on non-covalent functionalization of armchair carbon nanotube by tetrathiafulvalene molecule. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2396-2399.	2.7	28