
Stephen B Mcmahon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9410603/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature, 2002, 416, 636-640.	13.7	2,090
2	Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell, 1994, 76, 1001-1011.	13.5	1,002
3	Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature, 2000, 407, 1011-1015.	13.7	956
4	Role of the Immune system in chronic pain. Nature Reviews Neuroscience, 2005, 6, 521-532.	4.9	953
5	Tackling Pain at the Source: New Ideas about Nociceptors. Neuron, 1998, 20, 629-632.	3.8	781
6	NEUROTROPHINS: Mediators and Modulators of Pain. Annual Review of Neuroscience, 2006, 29, 507-538.	5.0	758
7	Dynamic receptive field plasticity in rat spinal cord dorsal horn following C-primary afferent input. Nature, 1987, 325, 151-153.	13.7	660
8	Expression and coexpression of Trk receptors in subpopulations of adult primary sensory neurons projecting to identified peripheral targets. Neuron, 1994, 12, 1161-1171.	3.8	608
9	Neurotrophins promote motor neuron survival and are present in embryonic limb bud. Nature, 1993, 363, 266-270.	13.7	605
10	A Distinct Subgroup of Small DRG Cells Express GDNF Receptor Components and GDNF Is Protective for These Neurons after Nerve Injury. Journal of Neuroscience, 1998, 18, 3059-3072.	1.7	572
11	Functional regeneration of sensory axons into the adult spinal cord. Nature, 2000, 403, 312-316.	13.7	492
12	Potent Analgesic Effects of GDNF in Neuropathic Pain States. Science, 2000, 290, 124-127.	6.0	482
13	Does the right side know what the left is doing?. Trends in Neurosciences, 1999, 22, 122-127.	4.2	448
14	The Expression of P2X3Purinoreceptors in Sensory Neurons: Effects of Axotomy and Glial-Derived Neurotrophic Factor. Molecular and Cellular Neurosciences, 1998, 12, 256-268.	1.0	441
15	The biological effects of endogenous nerve growth factor on adult sensory neurons revealed by a trkA-lgG fusion molecule. Nature Medicine, 1995, 1, 774-780.	15.2	411
16	Immune and glial cell factors as pain mediators and modulators. Experimental Neurology, 2005, 192, 444-462.	2.0	380
17	P2X2knockout mice and P2X2/P2X3double knockout mice reveal a role for the P2X2receptor subunit in mediating multiple sensory effects of ATP. Journal of Physiology, 2005, 567, 621-639.	1.3	334
18	Central hyperexcitability triggered by noxious inputs. Current Opinion in Neurobiology, 1993, 3, 602-610.	2.0	329

#	Article	IF	CITATIONS
19	Pathophysiology of Peripheral Neuropathic Pain: Immune Cells and Molecules. Anesthesia and Analgesia, 2007, 105, 838-847.	1.1	317
20	Spinal cord repair strategies: why do they work?. Nature Reviews Neuroscience, 2006, 7, 644-653.	4.9	309
21	Current Challenges in Glia-Pain Biology. Neuron, 2009, 64, 46-54.	3.8	295
22	Pain vulnerability: a neurobiological perspective. Nature Neuroscience, 2014, 17, 192-200.	7.1	292
23	CCL2 is a key mediator of microglia activation in neuropathic pain states. European Journal of Pain, 2009, 13, 263-272.	1.4	283
24	Brain-Derived Neurotrophic Factor Is Released in the Dorsal Horn by Distinctive Patterns of Afferent Fiber Stimulation. Journal of Neuroscience, 2001, 21, 4469-4477.	1.7	272
25	P2X7-Dependent Release of Interleukin-1Î ² and Nociception in the Spinal Cord following Lipopolysaccharide. Journal of Neuroscience, 2010, 30, 573-582.	1.7	261
26	Conditioning Injury-Induced Spinal Axon Regeneration Requires Signal Transducer and Activator of Transcription 3 Activation. Journal of Neuroscience, 2005, 25, 1645-1653.	1.7	242
27	Cannabinoid CB1 Receptor Expression in Rat Spinal Cord. Molecular and Cellular Neurosciences, 2000, 15, 510-521.	1.0	241
28	Chronic Pain: Emerging Evidence for the Involvement of Epigenetics. Neuron, 2012, 73, 435-444.	3.8	240
29	Conditioning Injury-Induced Spinal Axon Regeneration Fails in Interleukin-6 Knock-Out Mice. Journal of Neuroscience, 2004, 24, 4432-4443.	1.7	238
30	Opening paths to novel analgesics: the role of potassium channels in chronic pain. Trends in Neurosciences, 2014, 37, 146-158.	4.2	231
31	Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Medical and Biological Engineering and Computing, 2010, 48, 945-954.	1.6	226
32	NT-3 promotes growth of lesioned adult rat sensory axons ascending in the dorsal columns of the spinal cord. European Journal of Neuroscience, 1999, 11, 3873-3883.	1.2	220
33	Acid-Induced Pain and Its Modulation in Humans. Journal of Neuroscience, 2004, 24, 10974-10979.	1.7	220
34	Role of spinal microglia in rat models of peripheral nerve injury and inflammation. European Journal of Pain, 2007, 11, 223-230.	1.4	213
35	Peripheral administration of nerve growth factor in the adult rat produces a thermal hyperalgesia that requires the presence of sympathetic post-ganglionic neurones. Pain, 1995, 63, 109-115.	2.0	209
36	A role for the TTX-resistant sodium channel Nav 1.8 in NGF-induced hyperalgesia, but not neuropathic pain. NeuroReport, 2001, 12, 3077-3080.	0.6	200

#	Article	IF	CITATIONS
37	Sensitisation of visceral afferents by nerve growth factor in the adult rat. Pain, 1996, 66, 87-97.	2.0	199
38	BDNF: a neuromodulator in nociceptive pathways?. Brain Research Reviews, 2002, 40, 240-249.	9.1	189
39	Leukemia Inhibitory Factor Determines the Growth Status of Injured Adult Sensory Neurons. Journal of Neuroscience, 2001, 21, 7161-7170.	1.7	179
40	P2X RECEPTORS AND THEIR ROLE IN FEMALE IDIOPATHIC DETRUSOR INSTABILITY. Journal of Urology, 2002, 167, 157-164.	0.2	179
41	Nerve Growth Factor and Pain Mechanisms. Annual Review of Neuroscience, 2017, 40, 307-325.	5.0	179
42	Neutralization of endogenous NGF prevents the sensitization of nociceptors supplying inflamed skin. European Journal of Neuroscience, 1999, 11, 1698-1704.	1.2	177
43	Heritability of responses to painful stimuli in women: a classical twin study. Brain, 2007, 130, 3041-3049.	3.7	176
44	Itching for an explanation. Trends in Neurosciences, 1992, 15, 497-501.	4.2	173
45	trkA, CGRP and IB4 expression in retrogradely labelled cutaneous and visceral primary sensory neurones in the rat. Neuroscience Letters, 1996, 206, 33-36.	1.0	168
46	Immune Cytokines and Their Receptors in Inflammatory Pain. Trends in Immunology, 2018, 39, 240-255.	2.9	165
47	Postnatal Changes in the Expression of the trkA High-affinity NGF Receptor in Primary Sensory Neurons. European Journal of Neuroscience, 1996, 8, 2204-2208.	1.2	164
48	Characterization of rodent models of HIV-gp120 and anti-retroviral-associated neuropathic pain. Brain, 2007, 130, 2688-2702.	3.7	160
49	A model for the study of visceral pain states: chronic inflammation of the chronic decerebrate rat urinary bladder by irritant chemicals. Pain, 1987, 28, 109-127.	2.0	156
50	The effects of inflammation and inflammatory mediators on nociceptive behaviour induced by ATP analogues in the rat. British Journal of Pharmacology, 1999, 126, 326-332.	2.7	156
51	Assessing behavioural function following a pyramidotomy lesion of the corticospinal tract in adult mice. Experimental Neurology, 2005, 195, 524-539.	2.0	155
52	The Glial Cell Line-Derived Neurotrophic Factor Family Receptor Components Are Differentially Regulated within Sensory Neurons after Nerve Injury. Journal of Neuroscience, 2000, 20, 427-437.	1.7	154
53	Rapid increase of NGF, BDNF and NT-3 mRNAs in inflamed bladder. NeuroReport, 1998, 9, 1455-1458.	0.6	152
54	ATP in human skin elicits a dose-related pain response which is potentiated under conditions of hyperalgesia. Brain, 2000, 123, 1238-1246.	3.7	151

#	Article	IF	CITATIONS
55	Nerve growth factor induces P2X3 expression in sensory neurons. Journal of Neurochemistry, 2001, 77, 864-875.	2.1	151
56	Regulation of Expression of the Sensory Neuron-Specific Sodium Channel SNS in Inflammatory and Neuropathic Pain. Molecular and Cellular Neurosciences, 1997, 10, 196-207.	1.0	150
57	Nociceptor-derived brain-derived neurotrophic factor regulates acute and inflammatory but not neuropathic pain. Molecular and Cellular Neurosciences, 2006, 31, 539-548.	1.0	148
58	Crosstalk between the nociceptive and immune systems in host defence and disease. Nature Reviews Neuroscience, 2015, 16, 389-402.	4.9	148
59	Pharmacological, behavioural and mechanistic analysis of HIV-1 gp120 induced painful neuropathy. Pain, 2007, 133, 47-63.	2.0	145
60	Brain-derived neurotrophic factor induces NMDA receptor subunit one phosphorylation via ERK and PKC in the rat spinal cord. European Journal of Neuroscience, 2004, 20, 1769-1778.	1.2	138
61	Nerve Injury Induces Robust Allodynia and Ectopic Discharges in Nav1.3 Null Mutant Mice. Molecular Pain, 2006, 2, 1744-8069-2-33.	1.0	138
62	HDAC inhibitors attenuate the development of hypersensitivity in models of neuropathic pain. Pain, 2013, 154, 1668-1679.	2.0	135
63	ATP as a peripheral mediator of pain. Journal of the Autonomic Nervous System, 2000, 81, 187-194.	1.9	134
64	Modulation of Acid-Sensing Ion Channel Activity by Nitric Oxide. Journal of Neuroscience, 2007, 27, 13251-13260.	1.7	131
65	Phosphatidylinositol 3-Kinase Is a Key Mediator of Central Sensitization in Painful Inflammatory Conditions. Journal of Neuroscience, 2008, 28, 4261-4270.	1.7	131
66	Defining the nociceptor transcriptome. Frontiers in Molecular Neuroscience, 2014, 7, 87.	1.4	131
67	Effects of Etanercept and Minocycline in a rat model of spinal cord injury. European Journal of Pain, 2009, 13, 673-681.	1.4	130
68	Endogenous nerve growth factor regulates the sensitivity of nociceptors in the adult rat. European Journal of Neuroscience, 1998, 10, 1282-1291.	1.2	127
69	Growth responses of different subpopulations of adult sensory neurons to neurotrophic factors in vitro. European Journal of Neuroscience, 1999, 11, 3405-3414.	1.2	127
70	Noxious Stimulation Induces Trk Receptor and Downstream ERK Phosphorylation in Spinal Dorsal Horn. Molecular and Cellular Neurosciences, 2002, 21, 684-695.	1.0	121
71	Persistent Alterations in Microglial Enhancers in a Model of Chronic Pain. Cell Reports, 2016, 15, 1771-1781.	2.9	121
72	Galanin knockout mice reveal nociceptive deficits following peripheral nerve injury. European Journal of Neuroscience, 2000, 12, 793-802.	1.2	119

#	Article	IF	CITATIONS
73	Retinoic acid receptor β2 promotes functional regeneration of sensory axons in the spinal cord. Nature Neuroscience, 2006, 9, 243-250.	7.1	119
74	Immune or Genetic-Mediated Disruption of CASPR2 Causes Pain Hypersensitivity Due to Enhanced Primary Afferent Excitability. Neuron, 2018, 97, 806-822.e10.	3.8	119
75	Neuromodulation in the restoration of function after spinal cord injury. Lancet Neurology, The, 2018, 17, 905-917.	4.9	119
76	Causes and consequences of sympathetic basket formation in dorsal root ganglia. Pain, 1999, 82, S111-S120.	2.0	118
77	Adult Mammalian Sensory and Motor Neurons: Roles of Endogenous Neurotrophins and Rescue by Exogenous Neurotrophins after Axotomy. Journal of Neuroscience, 1997, 17, 470-476.	1.7	116
78	EphB receptors and ephrin-B ligands regulate spinal sensory connectivity and modulate pain processing. Nature Neuroscience, 2003, 6, 339-340.	7.1	111
79	Systemic blockade of P2X3 and P2X2/3 receptors attenuates bone cancer pain behaviour in rats. Brain, 2010, 133, 2549-2564.	3.7	110
80	The Molecular Fingerprint of Dorsal Root and Trigeminal Ganglion Neurons. Frontiers in Molecular Neuroscience, 2017, 10, 304.	1.4	108
81	Novel classes of nociceptors: beyond Sherrington. Trends in Neurosciences, 1990, 13, 199-201.	4.2	107
82	Selective activation of nociceptors by P2X receptor agonists in normal and inflamed rat skin. Journal of Physiology, 2001, 534, 437-445.	1.3	107
83	Regulation of Afferent Connectivity in the Adult Spinal Cord by Nerve Growth Factor. European Journal of Neuroscience, 1992, 4, 700-707.	1.2	105
84	NGF and GDNF ameliorate the increase in ATF3 expression which occurs in dorsal root ganglion cells in response to peripheral nerve injury. European Journal of Neuroscience, 2004, 19, 1437-1445.	1.2	104
85	Conduction Failure following Spinal Cord Injury: Functional and Anatomical Changes from Acute to Chronic Stages. Journal of Neuroscience, 2011, 31, 18543-18555.	1.7	103
86	Chondroitinase ABC-Mediated Plasticity of Spinal Sensory Function. Journal of Neuroscience, 2008, 28, 11998-12009.	1.7	102
87	Peptide expression is altered when afferent nerves reinnervate inappropriate tissue. Neuroscience Letters, 1987, 73, 9-15.	1.0	101
88	A Microchannel Neuroprosthesis for Bladder Control After Spinal Cord Injury in Rat. Science Translational Medicine, 2013, 5, 210ra155.	5.8	101
89	Dichotomizing somatic nerve fibers exist in rats but they are rare. Neuroscience Letters, 1984, 49, 187-192.	1.0	100
90	Long ascending projections to the midbrain from cells of lamina I and nucleus of the dorsolateral funiculus of the rat spinal cord. Journal of Comparative Neurology, 1985, 238, 401-416.	0.9	100

#	Article	lF	CITATIONS
91	The Yellow Fluorescent Protein (YFP-H) Mouse Reveals Neuroprotection as a Novel Mechanism Underlying Chondroitinase ABC-Mediated Repair after Spinal Cord Injury. Journal of Neuroscience, 2008, 28, 14107-14120.	1.7	100
92	Rapid co-release of interleukin 1? and caspase 1 in spinal cord inflammation. Journal of Neurochemistry, 2006, 99, 868-880.	2.1	97
93	CXCL5 Mediates UVB Irradiation–Induced Pain. Science Translational Medicine, 2011, 3, 90ra60.	5.8	97
94	Abnormal substance P release from the spinal cord following injury to primary sensory neurons. European Journal of Neuroscience, 2000, 12, 397-399.	1.2	95
95	Neurotrophin-3-Mediated Regeneration and Recovery of Proprioception Following Dorsal Rhizotomy. Molecular and Cellular Neurosciences, 2002, 19, 239-249.	1.0	95
96	Sprouting of peripherally regenerating primary sensory neurones in the adult central nervous system. Journal of Comparative Neurology, 1991, 304, 307-315.	0.9	93
97	Sex differences in peripheral not central immune responses to pain-inducing injury. Scientific Reports, 2017, 7, 16460.	1.6	92
98	Peripheral neuropathies and neurotrophic factors: animal models and clinical perspectives. Current Opinion in Neurobiology, 1995, 5, 616-624.	2.0	91
99	NT-3, but not BDNF, prevents atrophy and death of axotomized spinal cord projection neurons. European Journal of Neuroscience, 1998, 10, 3058-3068.	1.2	91
100	Two-Tiered Inhibition of Axon Regeneration at the Dorsal Root Entry Zone. Journal of Neuroscience, 2001, 21, 2651-2660.	1.7	86
101	Sensory Neuron Downregulation of the Kv9.1 Potassium Channel Subunit Mediates Neuropathic Pain following Nerve Injury. Journal of Neuroscience, 2012, 32, 17502-17513.	1.7	86
102	Ultravioletâ€B induced inflammation of human skin: Characterisation and comparison with traditional models of hyperlagesia. European Journal of Pain, 2009, 13, 524-532.	1.4	85
103	Analysis of Cutaneous Sensory Neurons in Transgenic Mice Lacking the Low Affinity Neurotrophin Receptor p75. European Journal of Neuroscience, 1997, 9, 18-28.	1.2	83
104	Comparison of dorsal root ganglion gene expression in rat models of traumatic and HIVâ€associated neuropathic pain. European Journal of Pain, 2009, 13, 387-398.	1.4	83
105	The changing role of primary afferent neurones in pain. Pain, 1990, 43, 269-272.	2.0	81
106	ATF3 expression in L4 dorsal root ganglion neurons after L5 spinal nerve transection. European Journal of Neuroscience, 2006, 23, 365-373.	1.2	81
107	Plasma extravasation in the rat urinary bladder following mechanical, electrical and chemical stimuli: evidence for a new population of chemosensitive primary sensory afferents. Neuroscience Letters, 1986, 72, 352-356.	1.0	80
108	Lentiviral vector expressing retinoic acid receptor β2 promotes recovery of function after corticospinal tract injury in the adult rat spinal cord. Human Molecular Genetics, 2006, 15, 3107-3118.	1.4	80

#	Article	IF	CITATIONS
109	Perturbing PSD-95 Interactions With NR2B-subtype Receptors Attenuates Spinal Nociceptive Plasticity and Neuropathic Pain. Molecular Therapy, 2011, 19, 1780-1792.	3.7	80
110	A QUANTITATIVE ANALYSIS OF PURINOCEPTOR EXPRESSION IN HUMAN FETAL AND ADULT BLADDERS. Journal of Urology, 2001, 165, 1730-1734.	0.2	76
111	NGF but Not NT-3 or BDNF Prevents the A Fiber Sprouting into Lamina II of the Spinal Cord That Occurs Following Axotomy. Molecular and Cellular Neurosciences, 1996, 8, 211-220.	1.0	75
112	A Comparison of RNA-Seq and Exon Arrays for Whole Genome Transcription Profiling of the L5 Spinal Nerve Transection Model of Neuropathic Pain in the Rat. Molecular Pain, 2014, 10, 1744-8069-10-7.	1.0	75
113	The consequences of long-term topical capsaicin application in the rat. Pain, 1991, 44, 301-310.	2.0	74
114	The signaling components of sensory fiber transmission involved in the activation of ERK MAP kinase in the mouse dorsal horn. Molecular and Cellular Neurosciences, 2003, 24, 259-270.	1.0	74
115	Inhibition of ERK phosphorylation decreases nociceptive behaviour in monoarthritic rats. Pain, 2005, 116, 411-419.	2.0	74
116	Axonal neuregulin 1 is a rate limiting but not essential factor for nerve remyelination. Brain, 2013, 136, 2279-2297.	3.7	73
117	Neuregulin-1 controls an endogenous repair mechanism after spinal cord injury. Brain, 2016, 139, 1394-1416.	3.7	69
118	The physiological function of different voltage-gated sodium channels in pain. Nature Reviews Neuroscience, 2021, 22, 263-274.	4.9	67
119	Long Micro-Channel Electrode Arrays: A Novel Type of Regenerative Peripheral Nerve Interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2009, 17, 454-460.	2.7	65
120	Expression of the regenerationâ€associated protein SPRR1A in primary sensory neurons and spinal cord of the adult mouse following peripheral and central injury. Journal of Comparative Neurology, 2009, 513, 51-68.	0.9	65
121	Changes in the transcriptional fingerprint of satellite glial cells following peripheral nerve injury. Glia, 2020, 68, 1375-1395.	2.5	65
122	Kv2 dysfunction after peripheral axotomy enhances sensory neuron responsiveness to sustained input. Experimental Neurology, 2014, 251, 115-126.	2.0	64
123	Large Scale <i>In Vivo</i> Recording of Sensory Neuron Activity with GCaMP6. ENeuro, 2018, 5, ENEURO.0417-17.2018.	0.9	63
124	Reversal of neurochemical changes and pain-related behavior in a model of neuropathic pain using modified lentiviral vectors expressing GDNF. Molecular Therapy, 2006, 13, 1101-1109.	3.7	62
125	Effects of GDNF on Axotomized Sensory and Motor Neurons in Adult Rats. European Journal of Neuroscience, 1997, 9, 1126-1129.	1.2	61
126	Microchannels as Axonal Amplifiers. IEEE Transactions on Biomedical Engineering, 2008, 55, 1136-1146.	2.5	61

#	Article	IF	CITATIONS
127	Intrathecally injected neurotrophins and the release of substance P from the rat isolated spinal cord. European Journal of Neuroscience, 2000, 12, 139-144.	1.2	60
128	Cortical Overexpression of Neuronal Calcium Sensor-1 Induces Functional Plasticity in Spinal Cord Following Unilateral Pyramidal Tract Injury in Rat. PLoS Biology, 2010, 8, e1000399.	2.6	60
129	Increasingly Irritable and Close to Tears: TRPA1 in Inflammatory Pain. Cell, 2006, 124, 1123-1125.	13.5	59
130	The localization of fluoride-resistant acid phosphatase (FRAP) in the pelvic nerves and sacral spinal cord of rats. Neuroscience Letters, 1986, 64, 305-310.	1.0	58
131	Glial cell line-derived neurotrophic factor increases calcitonin gene-related peptide immunoreactivity in sensory and motoneurons in vivo. European Journal of Neuroscience, 2003, 18, 2713-2721.	1.2	58
132	Ultraviolet Radiation-Induced Inflammation as a Model for Cutaneous Hyperalgesia. Journal of Investigative Dermatology, 2004, 122, 183-189.	0.3	58
133	Ultraviolet-B-induced mechanical hyperalgesia: A role for peripheral sensitisation. Pain, 2010, 150, 141-152.	2.0	57
134	Genes and epigenetic processes as prospective pain targets. Genome Medicine, 2013, 5, 12.	3.6	57
135	Pre-emptive intrathecal administration of an NMDA receptor antagonist (AP-5) prevents hyper-reflexia in a model of persistent visceral pain. Pain, 1994, 57, 335-340.	2.0	56
136	Inflammatory mediators and modulators of pain. , 2006, , 49-72.		55
137	Increased spinal cord phosphorylation of extracellular signal-regulated kinases mediates micturition overactivity in rats with chronic bladder inflammation. European Journal of Neuroscience, 2005, 21, 773-781.	1.2	54
138	Mice lacking acidâ€sensing ion channels (ASIC) 1 or 2, but not ASIC3, show increased pain behaviour in the formalin test. European Journal of Pain, 2009, 13, 554-563.	1.4	53
139	A regenerative microchannel neural interface for recording from and stimulating peripheral axons <i>in vivo</i> . Journal of Neural Engineering, 2012, 9, 016010.	1.8	52
140	Chronic cough and pain: Janus faces in sensory neurobiology?. Pulmonary Pharmacology and Therapeutics, 2013, 26, 476-485.	1.1	52
141	Are there fundamental differences in the peripheral mechanisms of visceral and somatic pain?. Behavioral and Brain Sciences, 1997, 20, 381-391.	0.4	50
142	Endogenous galanin potentiates spinal nociceptive processing following inflammation. Pain, 2001, 93, 267-277.	2.0	50
143	PainNetworks: A web-based resource for the visualisation of pain-related genes in the context of their network associations. Pain, 2013, 154, 2586e1-2586e12.	2.0	50
144	Using an engineered glutamate-gated chloride channel to silence sensory neurons and treat neuropathic pain at the source. Brain, 2017, 140, 2570-2585.	3.7	50

#	Article	IF	CITATIONS
145	A clonal cell line from immortalized olfactory ensheathing glia promotes functional recovery in the injured spinal cord. Molecular Therapy, 2006, 13, 598-608.	3.7	49
146	Transplanted neural progenitor cells survive and differentiate but achieve limited functional recovery in the lesioned adult rat spinal cord. Regenerative Medicine, 2007, 2, 929-945.	0.8	49
147	A retinoic acid receptor β agonist (CD2019) overcomes inhibition of axonal outgrowth via phosphoinositide 3-kinase signalling in the injured adult spinal cord. Neurobiology of Disease, 2010, 37, 147-155.	2.1	49
148	Genes Contributing to Pain Sensitivity in the Normal Population: An Exome Sequencing Study. PLoS Genetics, 2012, 8, e1003095.	1.5	49
149	The Role of G-Protein Receptor 84 in Experimental Neuropathic Pain. Journal of Neuroscience, 2015, 35, 8959-8969.	1.7	48
150	Delayed treatment with Chondroitinase ABC reverses chronic atrophy of rubrospinal neurons following spinal cord injury. Experimental Neurology, 2011, 228, 149-156.	2.0	47
151	Botulinum toxinâ€e treatment reduces human mechanical pain sensitivity and mechanotransduction. Annals of Neurology, 2014, 75, 591-596.	2.8	47
152	Ultraviolet Radiation on the Skin: A Painful Experience?. CNS Neuroscience and Therapeutics, 2016, 22, 118-126.	1.9	47
153	Sensory Axon-Derived Neuregulin-1 Is Required for Axoglial Signaling and Normal Sensory Function But Not for Long-Term Axon Maintenance. Journal of Neuroscience, 2009, 29, 7667-7678.	1.7	46
154	Genome-Wide Transcriptional Profiling of Skin and Dorsal Root Ganglia after Ultraviolet-B-Induced Inflammation. PLoS ONE, 2014, 9, e93338.	1.1	46
155	Plasticity of pain signaling: Role of neurotrophic factors exemplified by acid-induced pain. Journal of Neurobiology, 2004, 61, 72-87.	3.7	45
156	Activity-dependent phosphorylation of Akt/PKB in adult DRG neurons. European Journal of Neuroscience, 2005, 21, 1785-1797.	1.2	45
157	Probing Functional Properties of Nociceptive Axons Using a Microfluidic Culture System. PLoS ONE, 2013, 8, e80722.	1.1	45
158	Comprehensive analysis of long noncoding RNA expression in dorsal root ganglion reveals cell-type specificity and dysregulation after nerve injury. Pain, 2019, 160, 463-485.	2.0	45
159	Linking Pain Sensation to the Autonomic Nervous System: The Role of the Anterior Cingulate and Periaqueductal Gray Resting-State Networks. Frontiers in Neuroscience, 2020, 14, 147.	1.4	45
160	The Expression of Inflammatory Mediators in Bladder Pain Syndrome. European Urology, 2016, 70, 283-290.	0.9	44
161	The enigmatic role of the sympathetic nervous system in chronic pain. Trends in Pharmacological Sciences, 1991, 12, 399-402.	4.0	43
162	Molecular Mechanisms Underlying the Enhanced Analgesic Effect of Oxycodone Compared to Morphine in Chemotherapy-Induced Neuropathic Pain. PLoS ONE, 2014, 9, e91297.	1.1	43

#	Article	IF	CITATIONS
163	Altered potassium channel distribution and composition in myelinated axons suppresses hyperexcitability following injury. ELife, 2016, 5, e12661.	2.8	43
164	TrkB expression and phospho-ERK activation by brain-derived neurotrophic factor in rat spinothalamic tract neurons. Journal of Comparative Neurology, 2005, 489, 59-68.	0.9	42
165	Artemin has potent neurotrophic actions on injured C-fibres. Journal of the Peripheral Nervous System, 2006, 11, 330-345.	1.4	42
166	Synthesis of Lipid Mediators during UVB-Induced Inflammatory Hyperalgesia in Rats and Mice. PLoS ONE, 2013, 8, e81228.	1.1	41
167	Keeping in touch: sensory neurone regeneration in the CNS. Trends in Pharmacological Sciences, 2000, 21, 389-394.	4.0	40
168	Molecular forms of NGF in human and rat neuropathic tissues: decreased NGF precursor-like immunoreactivity in human diabetic skin. Journal of the Peripheral Nervous System, 2002, 7, 190-197.	1.4	40
169	Microchannel Electrodes for Recording and Stimulation:In VitroEvaluation. IEEE Transactions on Biomedical Engineering, 2009, 56, 1524-1534.	2.5	39
170	Specific Involvement of Atypical PKCξ/PKMξ in Spinal Persistent Nociceptive Processing following Peripheral Inflammation in Rat. Molecular Pain, 2011, 7, 1744-8069-7-86.	1.0	38
171	The distribution and central termination of single cutaneous and muscle unmyelinated fibres in rat spinal cord. Brain Research, 1985, 359, 39-48.	1.1	37
172	Chemokines as peripheral pain mediators. Neuroscience Letters, 2013, 557, 1-8.	1.0	37
173	Neurotrophic factors and their inhibitors in chronic pain treatment. Neurobiology of Disease, 2017, 97, 127-138.	2.1	37
174	Interactions between retinoic acid, nerve growth factor and sonic hedgehog signalling pathways in neurite outgrowth. Developmental Biology, 2006, 298, 167-175.	0.9	36
175	Endogenous Purinergic Control of Bladder Activity via Presynaptic P2X ₃ and P2X _{2/3} Receptors in the Spinal Cord. Journal of Neuroscience, 2010, 30, 4503-4507.	1.7	35
176	Behaviour of DRG sensory neurites at the intact and injured adult rat dorsal root entry zone: Postnatal neurites become paralysed, whilst injury improves the growth of embryonic neurites. Glia, 1999, 26, 309-323.	2.5	33
177	Physiological evidence for branching of peripheral unmyelinated sensory afferent fibers in the rat. Journal of Comparative Neurology, 1987, 261, 130-136.	0.9	32
178	Plasticity of primary afferent acid phosphatase expression following rerouting of afferents from muscle to skin in the adult rat. Journal of Comparative Neurology, 1988, 274, 1-8.	0.9	32
179	NMDA receptors and activity-dependent tuning of the receptive fields of spinal cord neurons. Nature, 1994, 369, 482-485.	13.7	32
180	Tamoxifen induces cellular stress in the nervous system by inhibiting cholesterol synthesis. Acta Neuropathologica Communications, 2015, 3, 74.	2.4	32

#	Article	IF	CITATIONS
181	Chemokine Expression in Peripheral Tissues from the Monosodium Lodoacetate Model of Chronic Joint Pain. Molecular Pain, 2013, 9, 1744-8069-9-57.	1.0	31
182	Changes in spinal cord reflexes after cross-anastomosis of cutaneous and muscle nerves in the adult rat. Nature, 1989, 342, 272-274.	13.7	30
183	Axon regeneration across the dorsal root entry zone. Progress in Brain Research, 2001, 132, 621-639.	0.9	30
184	Chapter 15 Sensory-motor integration in urinary bladder function. Progress in Brain Research, 1986, 67, 245-253.	0.9	29
185	HDAC4 is required for inflammation-associated thermal hypersensitivity. FASEB Journal, 2015, 29, 3370-3378.	0.2	28
186	The role of NaV channels in synaptic transmission after axotomy in a microfluidic culture platform. Scientific Reports, 2019, 9, 12915.	1.6	27
187	Spinal ERK activation contributes to the regulation of bladder function in spinal cord injured rats. Experimental Neurology, 2006, 200, 66-73.	2.0	26
188	The activation of the ERK pathway contributes to the spinal c-fosexpression observed after noxious bladder stimulation. Somatosensory & Motor Research, 2007, 24, 15-20.	0.4	26
189	Human psychophysics and rodent spinal neurones exhibit peripheral and central mechanisms of inflammatory pain in the UVB and UVB heat rekindling models. Journal of Physiology, 2015, 593, 4029-4042.	1.3	26
190	Neurobiological basis for pain vulnerability: why me?. Pain, 2017, 158, S108-S114.	2.0	26
191	Stroke recovery in rats after 24hâ€delayed, intramuscular neurotrophinâ€3 infusion. Annals of Neurology, 2018, 85, 32-46.	2.8	25
192	Identification of perineal sensory neurons activated by innocuous heat. Journal of Comparative Neurology, 2010, 518, 137-162.	0.9	23
193	Mice lacking Kcns1 in peripheral neurons show increased basal and neuropathic pain sensitivity. Pain, 2018, 159, 1641-1651.	2.0	23
194	Characterisation and mechanisms of bradykinin-evoked pain in man using iontophoresis. Pain, 2013, 154, 782-792.	2.0	22
195	Peripheral inflammatory pain sensitisation is independent of mast cell activation in male mice. Pain, 2017, 158, 1314-1322.	2.0	22
196	Granulocyte-Macrophage Colony Stimulating Factor As an Indirect Mediator of Nociceptor Activation and Pain. Journal of Neuroscience, 2020, 40, 2189-2199.	1.7	22
197	Endogenous galanin is required for the full expression of central sensitization following peripheral nerve injury. NeuroReport, 2001, 12, 3331-3334.	0.6	21
198	Encoding of cutaneous stimuli by lamina I projection neurons. Pain, 2021, 162, 2405-2417.	2.0	21

#	Article	IF	CITATIONS
199	Future Treatment Strategies for Neuropathic Pa. Handbook of Experimental Pharmacology, 2009, , 589-615.	0.9	21
200	New molecules for the treatment of pain. Current Opinion in Supportive and Palliative Care, 2011, 5, 111-115.	0.5	20
201	On-target and off-target effects of novel orthosteric and allosteric activators of GPR84. Scientific Reports, 2019, 9, 1861.	1.6	20
202	Neuromodulation using ultra low frequency current waveform reversibly blocks axonal conduction and chronic pain. Science Translational Medicine, 2021, 13, .	5.8	20
203	The electrophysiological consequences of electrode impalement of peripheral nerves in the rat. Brain Research, 1993, 631, 221-226.	1.1	19
204	The consequences of microneurography electrode-induced injury of peripheral nerves observed in the rat and man. Pain, 1994, 59, 385-393.	2.0	19
205	Neurotrophic Influences on Neuropathic Pain. Novartis Foundation Symposium, 2008, , 68-102.	1.2	19
206	Sensory processing of deep tissue nociception in the rat spinal cord and thalamic ventrobasal complex. Physiological Reports, 2017, 5, e13323.	0.7	19
207	An ATF3-CreERT2 Knock-In Mouse for Axotomy-Induced Genetic Editing: Proof of Principle. ENeuro, 2019, 6, ENEURO.0025-19.2019.	0.9	19
208	Dorsal Horn Plasticity Following Re-routeing of Peripheral Nerves: Evidence for Tissue-Specific Neurotrophic Influences from the Periphery. European Journal of Neuroscience, 1991, 3, 1112-1122.	1.2	17
209	Short-term effect of acute and repeated urinary bladder inflammation on thigmotactic behaviour in the laboratory rat. F1000Research, 2015, 4, 109.	0.8	16
210	A refinement to the formalin test in mice. F1000Research, 2019, 8, 891.	0.8	16
211	Regulation of neuropilin 1 by spinal cord injury in adult rats. Molecular and Cellular Neurosciences, 2005, 28, 475-484.	1.0	15
212	Chondroitinase ABC promotes plasticity of spinal reflexes following peripheral nerve injury. Experimental Neurology, 2012, 238, 64-78.	2.0	15
213	Retrograde labelling of dorsal root ganglion cells in the rat: A quantitative and morphological comparison of Fluoro-Gold with horseradish peroxidase labelling. Neuroscience Letters, 1992, 141, 53-56.	1.0	14
214	Muscle Afferents Innervating Skin Form Somatotopically Appropriate Connections in the Adult Rat Dorsal Horn. European Journal of Neuroscience, 1993, 5, 1083-1092.	1.2	14
215	The biological role of galanin in normal and neuropathic states. Progress in Brain Research, 2000, 129, 219-230.	0.9	14
216	Cortical Mechanisms of Single-Pulse Transcranial Magnetic Stimulation in Migraine. Neurotherapeutics, 2020, 17, 1973-1987.	2.1	14

#	Article	IF	CITATIONS
217	The impact of bone cancer on the peripheral encoding of mechanical pressure stimuli. Pain, 2020, 161, 1894-1905.	2.0	13
218	The impact of paradigm and stringent analysis parameters on measuring a net conditioned pain modulation effect: A test, retest, control study. European Journal of Pain, 2021, 25, 415-429.	1.4	13
219	A refinement to the formalin test in mice. F1000Research, 2019, 8, 891.	0.8	13
220	Negative Evidence for a Functional Role of Neuronal DNMT3a in Persistent Pain. Frontiers in Molecular Neuroscience, 2018, 11, 332.	1.4	12
221	Disruption of the Sensory System Affects Sterile Cutaneous Inflammation InÂVivo. Journal of Investigative Dermatology, 2019, 139, 1936-1945.e3.	0.3	12
222	The association between painâ€induced autonomic reactivity and descending pain control is mediated by the periaqueductal grey. Journal of Physiology, 2021, 599, 5243-5260.	1.3	12
223	Preferential Growth of Neonatal Rat Dorsal Root Ganglion Cells on Homotypic Peripheral Nerve SubstratesIn Vitro. European Journal of Neuroscience, 1996, 8, 649-657.	1.2	10
224	Dimethylarginine dimethylaminohydrolase 1 is involved in spinal nociceptive plasticity. Pain, 2015, 156, 2052-2060.	2.0	9
225	Transplantation of Cultured Olfactory Bulb Cells Prevents Abnormal Sensory Responses during Recovery from Dorsal Root Avulsion in the Rat. Cell Transplantation, 2017, 26, 913-924.	1.2	9
226	Assessment of Somatosensory Function and Self-harm in Adolescents. JAMA Network Open, 2021, 4, e2116853.	2.8	9
227	Examination of the contribution of Nav1.7 to axonal propagation in nociceptors. Pain, 2022, 163, e869-e881.	2.0	9
228	Manipulating the extracellular matrix: an animal model of the bladder pain syndrome. Pain, 2017, 158, 161-170.	2.0	8
229	Noncanonical Ion Channel Behaviour in Pain. International Journal of Molecular Sciences, 2019, 20, 4572.	1.8	8
230	Methodology for quantifying excitability of identified projection neurons in the dorsal horn of the spinal cord, specifically to study spinal cord stimulation paradigms. Journal of Neuroscience Methods, 2020, 330, 108479.	1.3	8
231	Noxious pressure stimulation demonstrates robust, reliable estimates of brain activity and self-reported pain. NeuroImage, 2020, 221, 117178.	2.1	8
232	Neurotrophic influences on neuropathic pain. Novartis Foundation Symposium, 2004, 261, 68-92; discussion 92-102, 149-54.	1.2	8
233	Sustained perturbation in functional connectivity induced by cold pain. European Journal of Pain, 2020, 24, 1850-1861.	1.4	6
234	Structural and Functional Substitution of Deleted Primary Sensory Neurons by New Growth from Intrinsic Spinal Cord Nerve Cells: An Alternative Concept in Reconstruction of Spinal Cord Circuits. Frontiers in Neurology, 2017, 8, 358.	1.1	4

#	Article	IF	CITATIONS
235	P2X RECEPTORS AND THEIR ROLE IN FEMALE IDIOPATHIC DETRUSOR INSTABILITY. Journal of Urology, 2002, , 157-164.	0.2	4
236	The Significance of Plastic Changes in Lamina 1 Systems. , 1989, , 249-271.		3
237	Therapeutic Potential of Neurotrophic Factors. , 2005, , 419-431.		1
238	Nerve growth factor and sensory nerve function. , 1999, , 167-193.		1
239	Evaluation of Recombinant Botulinum Neurotoxin Type A1 Efficacy in Peripheral Inflammatory Pain in Mice. Frontiers in Molecular Neuroscience, 2022, 15, .	1.4	1
240	Mediadores inflamatorios y moduladores del dolor. , 2007, , 49-72.		0
241	The spinal modulation of pain. , 1990, , 37-51.		0