
Michel Cayouette

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9410305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Time to see: How temporal identity factors specify the developing mammalian retina. Seminars in Cell and Developmental Biology, 2023, 142, 36-42.	2.3	5
2	A Casz1–NuRD complex regulates temporal identity transitions in neural progenitors. Scientific Reports, 2021, 11, 3858.	1.6	18
3	Atoh7-independent specification of retinal ganglion cell identity. Science Advances, 2021, 7, .	4.7	41
4	Cell reprogramming: Nature does it too. Current Biology, 2021, 31, R1434-R1437.	1.8	0
5	Pou2f1 and Pou2f2 cooperate to control the timing of cone photoreceptor production in the developing mouse retina. Development (Cambridge), 2020, 147, .	1.2	34
6	Transcriptional regulation of cone photoreceptor development. IBRO Reports, 2019, 6, S20-S21.	0.3	0
7	Boc Acts via Numb as a Shh-Dependent Endocytic Platform for Ptch1 Internalization and Shh-Mediated Axon Guidance. Neuron, 2019, 102, 1157-1171.e5.	3.8	29
8	Ben Barres (1954-2017). Development (Cambridge), 2018, 145, .	1.2	0
9	Cell lineage tracing in the retina: Could material transfer distort conclusions?. Developmental Dynamics, 2018, 247, 10-17.	0.8	20
10	Melanopsin Retinal Ganglion Cells Regulate Cone Photoreceptor Lamination in the Mouse Retina. Cell Reports, 2018, 23, 2416-2428.	2.9	29
11	Casz1 controls higher-order nuclear organization in rod photoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7987-E7996.	3.3	29
12	Msx1-Positive Progenitors in the Retinal Ciliary Margin Give Rise to Both Neural and Non-neural Progenies in Mammals. Developmental Cell, 2017, 40, 137-150.	3.1	70
13	RA Gets Out of the Way to Allow High-Acuity Vision. Developmental Cell, 2017, 42, 3-5.	3.1	2
14	Temporal Progression of Retinal Progenitor Cell Identity: Implications in Cell Replacement Therapies. Frontiers in Neural Circuits, 2017, 11, 105.	1.4	20
15	A link between planar polarity and staircase-like bundle architecture in hair cells. Development (Cambridge), 2016, 143, 3926-3932.	1.2	58
16	The planar cell polarity protein <scp>V</scp> angl2 is required for retinal axon guidance. Developmental Neurobiology, 2016, 76, 150-165.	1.5	12
17	SAPCD2 Controls Spindle Orientation and Asymmetric Divisions by Negatively Regulating the Gαi-LGN-NuMA Ternary Complex. Developmental Cell, 2016, 36, 50-62.	3.1	31
18	The LGN protein promotes planar proliferative divisions in the neocortex but apicobasal asymmetric terminal divisions in the retina. Development (Cambridge), 2016, 143, 575-81.	1.2	14

MICHEL CAYOUETTE

#	Article	IF	CITATIONS
19	Mechanisms of temporal identity regulation in mouse retinal progenitor cells. Neurogenesis (Austin,) Tj ETQq1 1	0.784314	4 rgBT /Overla
20	Hsc70 chaperone activity underlies Trio GEF function in axon growth and guidance induced by netrin-1. Journal of Cell Biology, 2015, 210, 817-832.	2.3	34
21	A Conserved Regulatory Logic Controls Temporal Identity in Mouse Neural Progenitors. Neuron, 2015, 85, 497-504.	3.8	135
22	Temporal Control of Neural Progenitors: TGF-β Switches the Clock Forward. Neuron, 2014, 84, 885-888.	3.8	3
23	Numb Regulates the Polarized Delivery of Cyclic Nucleotide-Gated Ion Channels in Rod Photoreceptor Cilia. Journal of Neuroscience, 2014, 34, 13976-13987.	1.7	29
24	Retinal Explant Culture. Bio-protocol, 2014, 4, .	0.2	2
25	Dissociated Retinal Cell Culture. Bio-protocol, 2014, 4, .	0.2	2
26	A Molecular Blueprint at the Apical Surface Establishes Planar Asymmetry in Cochlear Hair Cells. Developmental Cell, 2013, 27, 88-102.	3.1	88
27	Progenitor Competence: Genes Switching Places. Cell, 2013, 152, 13-14.	13.5	3
28	lkaros promotes early-born neuronal fates in the cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E716-25.	3.3	99
29	Numb is Required for the Production of Terminal Asymmetric Cell Divisions in the Developing Mouse Retina. Journal of Neuroscience, 2012, 32, 17197-17210.	1.7	60
30	In vivo evidence for unbiased ikaros retinal lineages using an ikarosâ€cre mouse line driving clonal recombination. Developmental Dynamics, 2012, 241, 1973-1985.	0.8	10
31	How Variable Clones Build an Invariant Retina. Neuron, 2012, 75, 786-798.	3.8	217
32	Reconstruction of rat retinal progenitor cell lineages in vitro reveals a surprising degree of stochasticity in cell fate decisions. Development (Cambridge), 2011, 138, 227-235.	1.2	139
33	Computational prediction of neural progenitor cell fates. Nature Methods, 2010, 7, 213-218.	9.0	108
34	Development and disease of the photoreceptor cilium. Clinical Genetics, 2009, 76, 137-145.	1.0	53
35	Retinal Cell and Tissue Culture. Springer Protocols, 2009, , 175-191.	0.1	0
36	Ikaros Confers Early Temporal Competence to Mouse Retinal Progenitor Cells. Neuron, 2008, 60, 26-39.	3.8	193

MICHEL CAYOUETTE

#	Article	IF	CITATIONS
37	Expanding Neuronal Layers by the Local Division of Committed Precursors. Neuron, 2007, 56, 575-577.	3.8	2
38	The CNTF/LIF signaling pathway regulates developmental programmed cell death and differentiation of rod precursor cells in the mouse retina in vivo. Developmental Biology, 2006, 300, 583-598.	0.9	24
39	Lineage in the vertebrate retina. Trends in Neurosciences, 2006, 29, 563-570.	4.2	117
40	The Polarity Protein Par-3 Directly Interacts with p75NTR to Regulate Myelination. Science, 2006, 314, 832-836.	6.0	135
41	Mammalian Inscuteable Regulates Spindle Orientation and Cell Fate in the Developing Retina. Neuron, 2005, 48, 539-545.	3.8	123
42	In Vivo Time-Lapse Imaging of Cell Divisions during Neurogenesis in the Developing Zebrafish Retina. Neuron, 2003, 37, 597-609.	3.8	183
43	Importance of Intrinsic Mechanisms in Cell Fate Decisions in the Developing Rat Retina. Neuron, 2003, 40, 897-904.	3.8	166
44	The orientation of cell division influences cell-fate choice in the developing mammalian retina. Development (Cambridge), 2003, 130, 2329-2339.	1.2	134
45	Asymmetric segregation of Numb: a mechanism for neural specification from Drosophila to mammals. Nature Neuroscience, 2002, 5, 1265-1269.	7.1	173
46	Asymmetric Segregation of Numb in Retinal Development and the Influence of the Pigmented Epithelium. Journal of Neuroscience, 2001, 21, 5643-5651.	1.7	159
47	Pigment Epithelium-Derived Factor Delays the Death of Photoreceptors in Mouse Models of Inherited Retinal Degenerations. Neurobiology of Disease, 1999, 6, 523-532.	2.1	192
48	Pigment Epithelium-Derived Factor (PEDF) in the Retina. , 1999, , 519-526.		1
49	Intraocular Gene Transfer of Ciliary Neurotrophic Factor Prevents Death and Increases Responsiveness of Rod Photoreceptors in the <i>retinal degeneration slow</i> mouse. Journal of Neuroscience, 1998, 18, 9282-9293.	1.7	208
50	Adenovirus-Mediated Gene Transfer of Ciliary Neurotrophic Factor Can Prevent Photoreceptor Degeneration in the Retinal Degeneration (<i>rd</i>) Mouse. Human Gene Therapy, 1997, 8, 423-430.	1.4	205