Friedrich Matthias Bickelhaupt

List of Publications by Year in Descending Order

 $\textbf{Source:} \ https://exaly.com/author-pdf/9410244/friedrich-matthias-bickelhaupt-publications-by-year.pdf/sold-matthias-bickelhaupt-publications-bick$

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

26,133 382 152 70 h-index g-index citations papers 436 29,018 7.48 5.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
382	B-DNA Structure and Stability: The Role of Nucleotide Composition and Order <i>ChemistryOpen</i> , 2022 , e202100231	2.3	
381	B-DNA Structure and Stability: The Role of Nucleotide Composition and Order <i>ChemistryOpen</i> , 2022 , 11, e202200013	2.3	
3 80	Polycyclic Aromatic Hydrocarbons (PAHs) in Interstellar Ices: A Computational Study into How the Ice Matrix Influences the Ionic State of PAH Photoproducts <i>ACS Earth and Space Chemistry</i> , 2022 , 6, 766-774	3.2	O
379	The Chemical Bond: When Atom Size Instead of Electronegativity Difference Determines Trend in Bond Strength. <i>Chemistry - A European Journal</i> , 2021 , 27, 15616-15622	4.8	6
378	The Pauli Repulsion-Lowering Concept in Catalysis. <i>Accounts of Chemical Research</i> , 2021 , 54, 1972-1981	24.3	22
377	Not Carbon s-p Hybridization, but Coordination Number Determines C-H and C-C Bond Length. <i>Chemistry - A European Journal</i> , 2021 , 27, 7074-7079	4.8	8
376	Do Sulfonamides Interact with Aromatic Rings?. Chemistry - A European Journal, 2021, 27, 5721-5729	4.8	1
375	A Quantitative Molecular Orbital Perspective of the Chalcogen Bond. <i>ChemistryOpen</i> , 2021 , 10, 390	2.3	O
374	8 Energy decomposition analysis in the context of quantitative molecular orbital theory 2021 , 199-212		15
373	Lewis Acid-Catalyzed Diels-Alder Reactions: Reactivity Trends across the Periodic Table. <i>Chemistry - A European Journal</i> , 2021 , 27, 10610-10620	4.8	11
372	Origin of the Æffect in SN2 Reactions. <i>Angewandte Chemie</i> , 2021 , 133, 21008-21016	3.6	2
371	Bifunctional Hydrogen Bond Donor-Catalyzed Diels-Alder Reactions: Origin of Stereoselectivity and Rate Enhancement. <i>Chemistry - A European Journal</i> , 2021 , 27, 5180-5190	4.8	19
370	Proton Transfer and S 2 Reactions as Steps of Fast Selenol and Thiol Oxidation in Proteins: A Model Molecular Study Based on GPx. <i>ChemPlusChem</i> , 2021 , 86, 525-532	2.8	10
369	Designing Rh(I)-Half-Sandwich Catalysts for Alkyne [2+2+2] Cycloadditions. <i>Synlett</i> , 2021 , 32, 561-572	2.2	4
368	Bismutamide als einfache Vermittler hochselektiver Pn P n-Radikal-Kupplungsreaktionen (Pn=N, P, As). <i>Angewandte Chemie</i> , 2021 , 133, 6513-6518	3.6	2
367	Bismuth Amides Mediate Facile and Highly Selective Pn-Pn Radical-Coupling Reactions (Pn=N, P, As). <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 6441-6445	16.4	12
366	How Oriented External Electric Fields Modulate Reactivity. <i>Chemistry - A European Journal</i> , 2021 , 27, 5683-5693	4.8	12

(2020-2021)

365	On the Origin of Regioselectivity in Palladium-Catalyzed Oxidation of Glucosides. <i>European Journal of Organic Chemistry</i> , 2021 , 2021, 632-636	3.2	6	
364	Dipolar repulsion in Ehalocarbonyl compounds revisited. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 20883-20891	3.6	1	
363	How metallylenes activate small molecules. <i>Chemical Science</i> , 2021 , 12, 4526-4535	9.4	8	
362	The pnictogen bond: a quantitative molecular orbital picture. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 13842-13852	3.6	11	
361	Chemical reactivity from an activation strain perspective. <i>Chemical Communications</i> , 2021 , 57, 5880-589	6 5.8	17	
360	Proton Transfer and S 2 Reactions as Steps of Fast Selenol and Thiol Oxidation in Proteins: A Model Molecular Study Based on GPx. <i>ChemPlusChem</i> , 2021 , 86, 524	2.8	1	
359	A Quantitative Molecular Orbital Perspective of the Chalcogen Bond. ChemistryOpen, 2021, 10, 391-401	2.3	17	
358	The Gauche Effect in XCH CH X Revisited. <i>ChemPhysChem</i> , 2021 , 22, 641-648	3.2	8	
357	Chalcogen bonds: Hierarchical ab initio benchmark and density functional theory performance study. <i>Journal of Computational Chemistry</i> , 2021 , 42, 688-698	3.5	9	
356	Origin of the Æffect in S 2 Reactions. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 20840-20848	16.4	11	
355	Innenr©ktitelbild: Origin of the Æffect in SN2 Reactions (Angew. Chem. 38/2021). <i>Angewandte Chemie</i> , 2021 , 133, 21239-21239	3.6		
354	Switch From Pauli-Lowering to LUMO-Lowering Catalysis in Brflsted Acid-Catalyzed Aza-Diels-Alder Reactions. <i>ChemistryOpen</i> , 2021 , 10, 784-789	2.3	2	
353	How Lewis Acids Catalyze Ene Reactions. European Journal of Organic Chemistry, 2021, 2021, 5275	3.2	2	
352	Radical Scavenging Potential of the Phenothiazine Scaffold: A Computational Analysis. <i>ChemMedChem</i> , 2021 ,	3.7	1	
351	Origin of asynchronicity in Diels-Alder reactions. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 20095-20	13,666	9	
350	Nature of Alkali- and Coinage-Metal Bonds versus Hydrogen Bonds. <i>Chemistry - an Asian Journal</i> , 2021 , 16, 315-321	4.5	2	
349	Computationally Guided Molecular Design to Minimize the LE/CT Gap in D-FA Fluorinated Triarylboranes for Efficient TADF via D and Ebridge Tuning. <i>Advanced Functional Materials</i> , 2020 , 30, 2002064	15.6	23	
348	Regioselectivity of Epoxide Ring-Openings via SN2 Reactions Under Basic and Acidic Conditions. <i>European Journal of Organic Chemistry</i> , 2020 , 2020, 3822-3828	3.2	12	

347	Mechanism of biomolecular recognition of trimethyllysine by the fluorinated aromatic cage of KDM5A PHD3 finger. <i>Communications Chemistry</i> , 2020 , 3,	6.3	4
346	Through-Space Polar-Interactions in 2,6-Diarylthiophenols. <i>ChemPhysChem</i> , 2020 , 21, 1080	3.2	
345	Performance of TDDFT Vertical Excitation Energies of Core-Substituted Naphthalene Diimides. Journal of Computational Chemistry, 2020 , 41, 1448-1455	3.5	13
344	Understanding the 1,3-Dipolar Cycloadditions of Allenes. <i>Chemistry - A European Journal</i> , 2020 , 26, 1152	2 <u>4</u> -815	39 ₃
343	N-Heterocyclic Silylenes as Ligands in Transition Metal Carbonyl Chemistry: Nature of Their Bonding and Supposed Innocence. <i>Chemistry - A European Journal</i> , 2020 , 26, 11276-11292	4.8	16
342	Origin of rate enhancement and asynchronicity in iminium catalyzed Diels-Alder reactions. <i>Chemical Science</i> , 2020 , 11, 8105-8112	9.4	25
341	Diastereoselective Synthesis of	4.2	9
340	How Alkali Cations Catalyze Aromatic Diels-Alder Reactions. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 116	7 ₋₄ 1. § 74	18
339	How Lewis Acids Catalyze Diels Alder Reactions. <i>Angewandte Chemie</i> , 2020 , 132, 6260-6265	3.6	21
338	How Lewis Acids Catalyze Diels-Alder Reactions. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 6201-6206	16.4	54
337	Ambident Nucleophilic Substitution: Understanding Non-HSAB Behavior through Activation Strain and Conceptual DFT Analyses. <i>Chemistry - A European Journal</i> , 2020 , 26, 3884-3893	4.8	13
336	Halogen Bonds in Ligand-Protein Systems: Molecular Orbital Theory for Drug Design. <i>Journal of Chemical Information and Modeling</i> , 2020 , 60, 1317-1328	6.1	13
335	Through-Space Polar-Interactions in 2,6-Diarylthiophenols. <i>ChemPhysChem</i> , 2020 , 21, 1092-1100	3.2	5
334	Comparison of Molecular Recognition of Trimethyllysine and Trimethylthialysine by Epigenetic Reader Proteins. <i>Molecules</i> , 2020 , 25,	4.8	3
333	Understanding chemical reactivity using the activation strain model. <i>Nature Protocols</i> , 2020 , 15, 649-66	718.8	91
332	Activation Strain Analyses of Counterion and Solvent Effects on the Ion-Pair S 2 Reaction of and CH Cl. <i>Journal of Computational Chemistry</i> , 2020 , 41, 317-327	3.5	3
331	Distortion-Controlled Redshift of Organic Dye Molecules. <i>Chemistry - A European Journal</i> , 2020 , 26, 208	0428093	3 5
330	Ligand-Mediated Regioselective Rhodium-Catalyzed Benzotriazole-Allene Coupling: Mechanistic Exploration and Quantum Chemical Analysis. <i>Chemistry - A European Journal</i> , 2020 , 26, 2342-2348	4.8	10

329	Probing Halogen-Iversus CH-Interactions in Molecular Balance. <i>Organic Letters</i> , 2020 , 22, 7870-7873	6.2	3
328	S2 versus E2 Competition of F and PH Revisited. <i>Journal of Organic Chemistry</i> , 2020 , 85, 14087-14093	4.2	8
327	The Nature of Nonclassical Carbonyl Ligands Explained by Kohn-Sham Molecular Orbital Theory. <i>Chemistry - A European Journal</i> , 2020 , 26, 15690-15699	4.8	6
326	The Hydrogenation Problem in Cobalt-based Catalytic Hydroaminomethylation. <i>ChemistrySelect</i> , 2020 , 5, 13981-13994	1.8	3
325	A Unified Framework for Understanding Nucleophilicity and Protophilicity in the S 2/E2 Competition. <i>Chemistry - A European Journal</i> , 2020 , 26, 15538-15548	4.8	13
324	Diels-Alder reactivities of cycloalkenediones with tetrazine. <i>Journal of Molecular Modeling</i> , 2019 , 25, 33	2	5
323	Hydride affinities of cationic maingroup-element hydrides across the periodic table. <i>Results in Chemistry</i> , 2019 , 1, 100007	2.1	3
322	Cation affinities throughout the periodic table. <i>Advances in Inorganic Chemistry</i> , 2019 , 73, 123-158	2.1	1
321	Half-Sandwich Metal-Catalyzed Alkyne [2+2+2] Cycloadditions and the Slippage Span Model. <i>ChemistryOpen</i> , 2019 , 8, 143-154	2.3	6
320	Racemization and Deracemization through Intermolecular Redox Behaviour. <i>Chemistry - A European Journal</i> , 2019 , 25, 9639-9642	4.8	5
319	PyFrag 2019-Automating the exploration and analysis of reaction mechanisms. <i>Journal of Computational Chemistry</i> , 2019 , 40, 2227-2233	3.5	30
318	Dual Activation of Aromatic Diels-Alder Reactions. <i>Chemistry - A European Journal</i> , 2019 , 25, 9902-9912	4.8	12
317	Nucleophilic substitution at di- and triphosphates: leaving group ability of phosphate versus diphosphate. <i>Electronic Structure</i> , 2019 , 1, 024001	2.6	4
316	Wie Dihalogene Michael-Additionsreaktionen katalysieren. <i>Angewandte Chemie</i> , 2019 , 131, 9015-9020	3.6	15
315	How Dihalogens Catalyze Michael Addition Reactions. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 8922-8926	16.4	54
314	Carbon monoxide insertion at a heavy p-block element: unprecedented formation of a cationic bismuth carbamoyl. <i>Chemical Science</i> , 2019 , 10, 4169-4176	9.4	36
313	para-Selective C-H Olefination of Aniline Derivatives via Pd/S,O-Ligand Catalysis. <i>Journal of the American Chemical Society</i> , 2019 , 141, 6719-6725	16.4	67
312	Probing Through-Space Polar-Interactions in 2,6-Diarylphenols. <i>Journal of Organic Chemistry</i> , 2019 , 84, 3632-3637	4.2	7

311	Structural Distortion of Cycloalkynes Influences Cycloaddition Rates both by Strain and Interaction Energies. <i>Chemistry - A European Journal</i> , 2019 , 25, 6342-6348	4.8	34
310	Understanding the differences between iron and palladium in cross-coupling reactions. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 9651-9664	3.6	9
309	Elucidating the Trends in Reactivity of Aza-1,3-Dipolar Cycloadditions. <i>European Journal of Organic Chemistry</i> , 2019 , 2019, 378-386	3.2	23
308	Steric Effects Dictate the Formation of Terminal Arylborylene Complexes of Ruthenium from Dihydroboranes. <i>Chemistry - A European Journal</i> , 2019 , 25, 13566-13571	4.8	8
307	Alkali Metal Cation Affinities of Neutral Maingroup-Element Hydrides across the Periodic Table. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 9137-9148	2.8	1
306	Toward Transition-Metal-Templated Construction of Arylated B Chains by Dihydroborane Dehydrocoupling. <i>Chemistry - A European Journal</i> , 2019 , 25, 16544	4.8	5
305	In My Element: Carbon. <i>Chemistry - A European Journal</i> , 2019 , 25, 19-19	4.8	
304	Chemoselectivity of Tertiary Azides in Strain-Promoted Alkyne-Azide Cycloadditions. <i>Chemistry - A European Journal</i> , 2019 , 25, 754-758	4.8	25
303	Nucleophilic Substitution in Solution: Activation Strain Analysis of Weak and Strong Solvent Effects. <i>Chemistry - A European Journal</i> , 2018 , 24, 5927-5938	4.8	33
302	Recognition of shorter and longer trimethyllysine analogues by epigenetic reader proteins. <i>Chemical Communications</i> , 2018 , 54, 2409-2412	5.8	11
301	How Mg ions lower the S2@P barrier in enzymatic triphosphate hydrolysis. <i>Chemical Communications</i> , 2018 , 54, 3448-3451	5.8	15
300	Origins of the Endo and Exo Selectivities in Cyclopropenone, Iminocyclopropene, and Triafulvene Diels-Alder Cycloadditions. <i>Journal of Organic Chemistry</i> , 2018 , 83, 3164-3170	4.2	31
299	Glucose-nucleobase pairs within DNA: impact of hydrophobicity, alternative linking unit and DNA polymerase nucleotide insertion studies. <i>Chemical Science</i> , 2018 , 9, 3544-3554	9.4	
298	Doppelte CH-Aktivierung eines maskierten Bismutamid-Kations. <i>Angewandte Chemie</i> , 2018 , 130, 3887-	38,951	18
297	Group 9 Metallacyclopentadienes as Key Intermediates in [2+2+2] Alkyne Cyclotrimerizations. Insight from Activation Strain Analyses. <i>ChemPhysChem</i> , 2018 , 19, 1766-1773	3.2	8
296	Double CH Activation of a Masked Cationic Bismuth Amide. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 3825-3829	16.4	41
295	Ion-Pair S 2 Reaction of OH and CH Cl: Activation Strain Analyses of Counterion and Solvent Effects. <i>Chemistry - an Asian Journal</i> , 2018 , 13, 1138-1147	4.5	9
294	Trifluoromethyl Vinyl Sulfide: A Building Block for the Synthesis of CFS-Containing Isoxazolidines. Journal of Organic Chemistry, 2018 , 83, 1779-1789	4.2	14

293	Nucleophilic Substitution (SN2): Dependence on Nucleophile, Leaving Group, Central Atom, Substituents, and Solvent. <i>ChemPhysChem</i> , 2018 , 19, 1248-1248	3.2	2
292	Nucleophilic Substitution (S 2): Dependence on Nucleophile, Leaving Group, Central Atom, Substituents, and Solvent. <i>ChemPhysChem</i> , 2018 , 19, 1315-1330	3.2	85
291	Tuning Heterocalixarenes to Improve Their Anion Recognition: A Computational Approach. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 3328-3336	2.8	19
290	Integrative Theory/Experiment-Driven Exploration of a Multicomponent Reaction towards Imidazoline-2-(thi)ones. <i>European Journal of Organic Chemistry</i> , 2018 , 2018, 104-112	3.2	2
289	Oxidation of organic diselenides and ditellurides by HO for bioinspired catalyst design. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 20874-20885	3.6	23
288	Highly Stable and Selective Tetrazines for the Coordination-Assisted Bioorthogonal Ligation with Vinylboronic Acids. <i>Bioconjugate Chemistry</i> , 2018 , 29, 3054-3059	6.3	27
287	Regioselectivity of the Pauson-Khand reaction in single-walled carbon nanotubes. <i>Nanoscale</i> , 2018 , 10, 15078-15089	7.7	6
286	Arylic C-X Bond Activation by Palladium Catalysts: Activation Strain Analyses of Reactivity Trends. <i>Scientific Reports</i> , 2018 , 8, 10729	4.9	14
285	A methodology for the photocatalyzed radical trifluoromethylation of indoles: A combined experimental and computational study. <i>Journal of Fluorine Chemistry</i> , 2018 , 214, 94-100	2.1	13
284	Nature and strength of chalcogen-Ibonds. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 27592-27599	3.6	19
283	Factors Controlling the Diels-Alder Reactivity of Hetero-1,3-Butadienes. <i>ChemistryOpen</i> , 2018 , 7, 995-10	0043	17
282	Rational design of near-infrared absorbing organic dyes: Controlling the HOMO-LUMO gap using quantitative molecular orbital theory. <i>Journal of Computational Chemistry</i> , 2018 , 39, 2690-2696	3.5	17
281	Anion Recognition by Organometallic Calixarenes: Analysis from Relativistic DFT Calculations. Organometallics, 2018 , 37, 2167-2176	3.8	20
280	Asymmetric identity S N 2 transition states: Nucleophilic substitution at Bubstituted carbon and silicon centers. <i>International Journal of Mass Spectrometry</i> , 2017 , 413, 85-91	1.9	13
279	Eight-coordinate fluoride in a silicate double-four-ring. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 828-833	11.5	11
278	B-DNA model systems in non-terran bio-solvents: implications for structure, stability and replication. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 16969-16978	3.6	17
277	Understanding the Reactivity of Ion-Encapsulated Fullerenes. <i>Chemistry - A European Journal</i> , 2017 , 23, 11030-11036	4.8	28
276	Analyzing Reaction Rates with the Distortion/Interaction-Activation Strain Model. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 10070-10086	16.4	649

275	Cesium's Off-the-Map Valence Orbital. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 9772-9776	16.4	14
274	Das Distortion/Interaction-Activation-Strain-Modell zur Analyse von Reaktionsgeschwindigkeiten. <i>Angewandte Chemie</i> , 2017 , 129, 10204-10221	3.6	136
273	Regio- and Stereoselectivity in 1,3-Dipolar Cycloadditions: Activation Strain Analyses for Reactions of Hydrazoic Acid with Substituted Alkenes. <i>European Journal of Organic Chemistry</i> , 2017 , 2017, 4313-4.	3∮8	3
272	Nature of the Ru-NO Coordination Bond: Kohn-Sham Molecular Orbital and Energy Decomposition Analysis. <i>ChemistryOpen</i> , 2017 , 6, 410-416	2.3	11
271	Silylene-Induced Reduction of [Mn2(CO)10]: Formation of a Five-Coordinate Silicon(IV) Complex with an O-Bound [(OC)4Mn=Mn(CO)4]2Ligand. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 186-191	2.3	5
270	Activation Strain Analysis of S2 Reactions at C, N, O, and F Centers. <i>Journal of Physical Chemistry A</i> , 2017 , 121, 885-891	2.8	19
269	Role of the Chalcogen (S, Se, Te) in the Oxidation Mechanism of the Glutathione Peroxidase Active Site. <i>ChemPhysChem</i> , 2017 , 18, 2990-2998	3.2	35
268	Stabilization of 2,6-Diarylanilinum Cation by Through-Space Cation-Interactions. <i>Journal of Organic Chemistry</i> , 2017 , 82, 9418-9424	4.2	11
267	Innentitelbild: Das Distortion/Interaction-Activation-Strain-Modell zur Analyse von Reaktionsgeschwindigkeiten (Angew. Chem. 34/2017). <i>Angewandte Chemie</i> , 2017 , 129, 10134-10134	3.6	
266	Role of Orbital Interactions and Activation Strain (Distortion Energies) on Reactivities in the Normal and Inverse Electron-Demand Cycloadditions of Strained and Unstrained Cycloalkenes. <i>Journal of Organic Chemistry</i> , 2017 , 82, 8668-8675	4.2	48
265	Cesium's Off-the-Map Valence Orbital. <i>Angewandte Chemie</i> , 2017 , 129, 9904-9908	3.6	5
264	Macrocycles All Aflutter: Substitution at an Allylic Center Reveals the Conformational Dynamics of [13]-Macrodilactones. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 2623-2633	4.5	5
263	How the electron-deficient cavity of heterocalixarenes recognizes anions: insights from computation. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 24696-24705	3.6	25
262	Alkali Metal Cation Affinities of Anionic Main Group-Element Hydrides Across the Periodic Table. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 2604-2611	4.5	10
261	Role of the Chalcogen (S, Se, Te) in the Oxidation Mechanism of the Glutathione Peroxidase Active Site. <i>ChemPhysChem</i> , 2017 , 18, 2950-2950	3.2	0
260	Deracemization of a Racemic Allylic Sulfoxide Using Viedma Ripening. <i>Crystal Growth and Design</i> , 2017 , 17, 4454-4457	3.5	20
259	Enhanced Back-Donation as a Way to Higher Coordination Numbers in d [M(NHC)] Complexes: A DFT Study. <i>Chemistry - A European Journal</i> , 2017 , 23, 614-622	4.8	12
258	Formation of a Trifluorophosphane Platinum(II) Complex by P-F Bond Activation of Phosphorus Pentafluoride with a Pt Complex. <i>Chemistry - A European Journal</i> , 2017 , 23, 5948-5952	4.8	7

(2015-2016)

257	Understanding the Oxidative Addition of Bonds to Group 13 Compounds. <i>Chemistry - A European Journal</i> , 2016 , 22, 13669-76	4.8	19	
256	Stereoselective Synthesis of 1-Tuberculosinyl Adenosine; a Virulence Factor of Mycobacterium tuberculosis. <i>Journal of Organic Chemistry</i> , 2016 , 81, 6686-96	4.2	15	
255	4th International Conference on Chemical Bonding. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 9353-93	3 56 .8	1	
254	Deeper Insight into the Diels-Alder Reaction through the Activation Strain Model. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 3297-3304	4.5	39	
253	Ion-Pair SN 2 Substitution: Activation Strain Analyses of Counter-Ion and Solvent Effects. <i>Chemistry - A European Journal</i> , 2016 , 22, 4431-9	4.8	25	
252	Source of Cooperativity in Halogen-Bonded Haloamine Tetramers. <i>ChemPhysChem</i> , 2016 , 17, 474-80	3.2	13	
251	Synthesis and Hydrolysis of Alkoxy(aminoalkyl)diorganylsilanes of the Formula Type R2(RO)Si(CH2)nNH2 (R = Alkyl, n = 1B): A Systematic Experimental and Computational Study. <i>European Journal of Inorganic Chemistry</i> , 2016 , 2016, 1641-1659	2.3	2	
250	(4 + 2) and (2 + 2) Cycloadditions of Benzyne to C60 and Zig-Zag Single-Walled Carbon Nanotubes: The Effect of the Curvature. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 1716-1726	3.8	26	
249	GlucoseNucleobase Pseudo Base Pairs: Biomolecular Interactions within DNA. <i>Angewandte Chemie</i> , 2016 , 128, 8785-8789	3.6	2	
248	Glucose-Nucleobase Pseudo Base Pairs: Biomolecular Interactions within DNA. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8643-7	16.4	6	
247	Reactivity and Selectivity of Bowl-Shaped Polycyclic Aromatic Hydrocarbons: Relationship to C60. <i>Chemistry - A European Journal</i> , 2016 , 22, 1368-78	4.8	31	
246	Substituent effects on the optical properties of naphthalenediimides: A frontier orbital analysis across the periodic table. <i>Journal of Computational Chemistry</i> , 2016 , 37, 304-13	3.5	11	
245	Reaction Mechanism and Regioselectivity of the Bingel-Hirsch Addition of Dimethyl Bromomalonate to La@C2v -C82. <i>Chemistry - A European Journal</i> , 2016 , 22, 5953-62	4.8	18	
244	Addition-Elimination or Nucleophilic Substitution? Understanding the Energy Profiles for the Reaction of Chalcogenolates with Dichalcogenides. <i>Journal of Chemical Theory and Computation</i> , 2016 , 12, 2752-61	6.4	27	
243	New Insights into the Reactivity of Cisplatin with Free and Restrained Nucleophiles: Microsolvation Effects and Base Selectivity in Cisplatin-DNA Interactions. <i>ChemPhysChem</i> , 2016 , 17, 3932-3947	3.2	10	
242	Alkali Metal Cation versus Proton and Methyl Cation Affinities: Structure and Bonding Mechanism. <i>ChemistryOpen</i> , 2016 , 5, 247-53	2.3	4	
241	Understanding the reactivity of endohedral metallofullerenes: C78 versus Sc3N@C78. <i>Chemistry - A European Journal</i> , 2015 , 21, 5760-8	4.8	42	
240	Bite-angle bending as a key for understanding group-10 metal reactivity of d-[M(NHC)] complexes with sterically modest NHC ligands. <i>Chemical Science</i> , 2015 , 6, 1426-1432	9.4	25	

239	Direct detection of the mercury-nitrogen bond in the thymine-Hg(II)-thymine base-pair with (199)Hg NMR spectroscopy. <i>Chemical Communications</i> , 2015 , 51, 8488-91	5.8	28
238	Selective C-H and C-C Bond Activation: Electronic Regimes as a Tool for Designing d(10) MLn Catalysts. <i>Chemistry - an Asian Journal</i> , 2015 , 10, 2272-82	4.5	9
237	Six-coordinate Group 13 complexes: the role of d orbitals and electron-rich multi-center bonding. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 12034-8	16.4	10
236	Role of Steric Attraction and Bite-Angle Flexibility in Metal-Mediated CH Bond Activation. <i>ACS Catalysis</i> , 2015 , 5, 5766-5775	13.1	50
235	Chemical basis for the recognition of trimethyllysine by epigenetic reader proteins. <i>Nature Communications</i> , 2015 , 6, 8911	17.4	57
234	Activation-strain analysis reveals unexpected origin of fast reactivity in heteroaromatic azadiene inverse-electron-demand diels-alder cycloadditions. <i>Journal of Organic Chemistry</i> , 2015 , 80, 548-58	4.2	38
233	How the disulfide conformation determines the disulfide/thiol redox potential. <i>Journal of Biomolecular Structure and Dynamics</i> , 2015 , 33, 93-103	3.6	13
232	Is There a Need to Discuss Atomic Orbital Overlap When Teaching Hydrogen Halide Bond Strength and Acidity Trends in Organic Chemistry?. <i>Journal of Chemical Education</i> , 2015 , 92, 286-290	2.4	5
231	The activation strain model and molecular orbital theory. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2015 , 5, 324-343	7.9	218
230	Computational (DFT) and Experimental (EXAFS) Study of the Interaction of [Ir(IMes)(H)2 (L)3] with Substrates and Co-substrates Relevant for SABRE in Dilute Systems. <i>Chemistry - A European Journal</i> , 2015 , 21, 10482-9	4.8	11
229	Reactivity of the Donor-Stabilized Silylenes [iPrNC(Ph)NiPr]2 Si and [iPrNC(NiPr2)NiPr]2 Si: Activation of CO2 and CS2. <i>Chemistry - A European Journal</i> , 2015 , 21, 16665-72	4.8	42
228	Factors controlling ælimination reactions in group 10 metal complexes. <i>Chemistry - A European Journal</i> , 2015 , 21, 14362-9	4.8	31
227	Six-Coordinate Group 13 Complexes: The Role of d Orbitals and Electron-Rich Multi-Center Bonding. <i>Angewandte Chemie</i> , 2015 , 127, 12202-12206	3.6	5
226	Stable Four-Coordinate Guanidinatosilicon(IV) Complexes with SiN3El Skeletons (El = S, Se, Te) and Si=El Double Bonds. <i>Chemistry - A European Journal</i> , 2015 , 21, 14011-21	4.8	26
225	Ene-ene-yne reactions: activation strain analysis and the role of aromaticity. <i>Chemistry - A European Journal</i> , 2014 , 20, 10791-801	4.8	49
224	Understanding E2 versus SN2 Competition under Acidic and Basic Conditions. <i>ChemistryOpen</i> , 2014 , 3, 29-36	2.3	31
223	Silicon ⊞ffect: A Systematic Experimental and Computational Study of the Hydrolysis of C∃and CFunctionalized Alkoxytriorganylsilanes of the Formula Type ROSiMe2(CH2)nX (R = Me, Et; n = 1, 3; X = Functional Group). <i>Organometallics</i> , 2014 , 33, 2721-2737	3.8	22
222	Stabilisation of 2,6-diarylpyridinium cation by through-space polar-linteractions. <i>Chemistry - A European Journal</i> , 2014 , 20, 6268-71	4.8	13

221	Diastereoselective one-pot synthesis of tetrafunctionalized 2-imidazolines. <i>Journal of Organic Chemistry</i> , 2014 , 79, 5219-26	4.2	5	
220	The EDA Perspective of Chemical Bonding 2014 , 121-157		137	
219	Origin of the "endo rule" in Diels-Alder reactions. <i>Journal of Computational Chemistry</i> , 2014 , 35, 371-6	3.5	66	
218	Highly accelerated inverse electron-demand cycloaddition of electron-deficient azides with aliphatic cyclooctynes. <i>Nature Communications</i> , 2014 , 5, 5378	17.4	117	
217	Indenyl effect due to metal slippage? Computational exploration of rhodium-catalyzed acetylene [2+2+2] cyclotrimerization. <i>ChemPhysChem</i> , 2014 , 15, 219-28	3.2	24	
216	Origin of Reactivity Trends of Noble Gas Endohedral Fullerenes Ng2@C60 (Ng = He to Xe). <i>Journal of Chemical Theory and Computation</i> , 2014 , 10, 3863-70	6.4	32	
215	The substituent effect on benzene dications. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 4752-63	3.6	14	
214	Reactions of the donor-stabilized silylene bis[N,N'-diisopropyl-benzamidinato(-)]silicon(II) with Brfisted acids. <i>Chemistry - A European Journal</i> , 2014 , 20, 16462-6	4.8	15	
213	Controlling the oxidative addition of aryl halides to Au(I). <i>Journal of Computational Chemistry</i> , 2014 , 35, 2140-5	3.5	58	
212	The activation strain model and molecular orbital theory: understanding and designing chemical reactions. <i>Chemical Society Reviews</i> , 2014 , 43, 4953-67	58.5	455	
211	Rationalizing the structural variability of the exocyclic amino groups in nucleobases and their metal complexes: cytosine and adenine. <i>Chemistry - A European Journal</i> , 2014 , 20, 9494-9	4.8	24	
210	Thermodynamics of the Cu(II) Ethiolate and Cu(I) disulfide equilibrium: a combined experimental and theoretical study. <i>Inorganic Chemistry</i> , 2014 , 53, 8494-504	5.1	26	
209	Bis[N,N'-diisopropylbenzamidinato(-)]silicon(II): Lewis acid/base reactions with triorganylboranes. <i>Chemistry - A European Journal</i> , 2014 , 20, 12411-5	4.8	26	
208	Effects of the protonation state in the interaction of an HIV-1 reverse transcriptase (RT) amino acid, Lys101, and a non nucleoside RT inhibitor, GW420867X. <i>Journal of Molecular Modeling</i> , 2014 , 20, 2332	2	3	
207	Theoretical and experimental study of charge transfer through DNA: impact of mercury mediated T-Hg-T base pair. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 5374-81	3.4	37	
206	The donor-stabilized silylene bis[N,N'-diisopropylbenzamidinato(-)]silicon(II): synthesis, electronic structure, and reactivity. <i>Chemistry - A European Journal</i> , 2014 , 20, 9319-29	4.8	59	
205	The many faces of halogen bonding: a review of theoretical models and methods. <i>Wiley Interdisciplinary Reviews: Computational Molecular Science</i> , 2014 , 4, 523-540	7.9	163	
204	d10-ML2 Complexes: Structure, Bonding, and Catalytic Activity. <i>Structure and Bonding</i> , 2014 , 139-161	0.9	1	

203	B-DNA structure and stability: the role of hydrogen bonding, Estacking interactions, twist-angle, and solvation. <i>Organic and Biomolecular Chemistry</i> , 2014 , 12, 4691-700	3.9	51
202	New concepts for designing d10 -M(L)n catalysts: d regime, s regime and intrinsic bite-angle flexibility. <i>Chemistry - A European Journal</i> , 2014 , 20, 11370-81	4.8	31
201	Normal-to-abnormal rearrangement and NHC activation in three-coordinate iron(II) carbene complexes. <i>Journal of the American Chemical Society</i> , 2013 , 135, 13338-41	16.4	107
200	Aggregation and cooperative effects in the aldol reactions of lithium enolates. <i>Chemistry - A European Journal</i> , 2013 , 19, 13761-73	4.8	12
199	Reactivity in nucleophilic vinylic substitution (S(N)V):S(N)VIversus S(N)VImechanistic dichotomy. Journal of Organic Chemistry, 2013 , 78, 8574-84	4.2	31
198	Neutral six-coordinate and cationic five-coordinate silicon(IV) complexes with two bidentate monoanionic N,S-pyridine-2-thiolato(-) ligands. <i>Inorganic Chemistry</i> , 2013 , 52, 10664-76	5.1	34
197	Nonlinear d(10)-ML2 Transition-Metal Complexes. <i>ChemistryOpen</i> , 2013 , 2, 106-14	2.3	50
196	X2Y2 isomers: tuning structure and relative stability through electronegativity differences (X = H, Li, Na, F, Cl, Br, I; Y = O, S, Se, Te). <i>Inorganic Chemistry</i> , 2013 , 52, 2458-65	5.1	11
195	In silico design of heteroaromatic half-sandwich RhI catalysts for acetylene [2+2+2] cyclotrimerization: evidence of a reverse indenyl effect. <i>Chemistry - A European Journal</i> , 2013 , 19, 1333	7-4 8	26
194	Self-assembly of N3-substituted xanthines in the solid state and at the solid-liquid interface. <i>Langmuir</i> , 2013 , 29, 7283-90	4	9
193	A computational study on the reactivity enhancement in the free radical polymerization of alkyl hydroxymethacrylate and acrylate derivatives. <i>Journal of Polymer Science Part A</i> , 2013 , 51, 880-889	2.5	6
192	Stereodivergent SN2@P reactions of borane oxazaphospholidines: experimental and theoretical studies. <i>Journal of the American Chemical Society</i> , 2013 , 135, 4483-91	16.4	36
191	Why do cycloaddition reactions involving C60 prefer [6,6] over [5,6] bonds?. <i>Chemistry - A European Journal</i> , 2013 , 19, 7416-22	4.8	88
190	Supramolecular H-bonded porous networks at surfaces: exploiting primary and secondary interactions in a bi-component melamine-xanthine system. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 12442-6	3.6	12
189	Complexes of 4-substituted phenolates with HF and HCN: energy decomposition and electronic structure analyses of hydrogen bonding. <i>Journal of Computational Chemistry</i> , 2013 , 34, 696-705	3.5	8
188	Symmetrical P4 cleavage at cobalt half sandwich complexes [(E -C5H5)Co(L)] (L = CO, NHC)a computational case study on the mechanism of symmetrical P4 degradation to P2 ligands. <i>Dalton Transactions</i> , 2013 , 42, 7468-81	4.3	17
187	B-DNA Structure and Stability as Function of Nucleic Acid Composition: Dispersion-Corrected DFT Study of Dinucleoside Monophosphate Single and Double Strands. <i>ChemistryOpen</i> , 2013 , 2, 186-93	2.3	26
186	Benchmark study on the smallest bimolecular nucleophilic substitution reaction: H?+CH⊞>CH⊞H?. <i>Molecules</i> , 2013 , 18, 7726-38	4.8	2

185	Alder-ene reaction: aromaticity and activation-strain analysis. <i>Journal of Computational Chemistry</i> , 2012 , 33, 509-16	3.5	83
184	Supramolecular ring structures of 7-methylguanine: a computational study of its self-assembly and anion binding. <i>Molecules</i> , 2012 , 18, 225-35	4.8	3
183	Solvent effects on hydrogen bonds in Watson Trick, mismatched, and modified DNA base pairs. <i>Computational and Theoretical Chemistry</i> , 2012 , 998, 57-63	2	25
182	Chemical shifts in nucleic acids studied by density functional theory calculations and comparison with experiment. <i>Chemistry - A European Journal</i> , 2012 , 18, 12372-87	4.8	48
181	Type-I dyotropic reactions: understanding trends in barriers. <i>Chemistry - A European Journal</i> , 2012 , 18, 12395-403	4.8	71
180	Synthesis and structural characterisation of neutral pentacoordinate silicon(IV) complexes with a tridentate dianionic N,N,S chelate ligand. <i>Dalton Transactions</i> , 2012 , 41, 2148-62	4.3	31
179	Theoretical study of the structure and bonding in ThC2 and UC2. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 747-55	2.8	24
178	On the origin of the steric effect. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 9846-54	3.6	41
177	Halogen Bonding versus Hydrogen Bonding: A Molecular Orbital Perspective. <i>ChemistryOpen</i> , 2012 , 1, 96-105	2.3	149
176	Neutral Pentacoordinate Halogeno- and Pseudohalogenosilicon(IV) Complexes with a Tridentate Dianionic O,N,O or N,N,O Ligand: Synthesis and Structural Characterization in the Solid State and in Solution. <i>European Journal of Inorganic Chemistry</i> , 2012 , 2012, 3216-3228	2.3	18
175	The role of protein plasticity in computational rationalization studies on regioselectivity in testosterone hydroxylation by cytochrome P450 BM3 mutants. <i>Current Drug Metabolism</i> , 2012 , 13, 155	;- <i>6</i> 6 ⁵	10
174	All-metal aromatic clusters M4(2-) (M = B, Al, and Ga). Are Electrons distortive or not?. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 20673-81	3.6	11
173	tert-Butyl cation affinities of maingroup-element hydrides: effect of methyl substituents at the protophilic center. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 8310-5	2.8	13
172	Organomagnesium clusters: Structure, stability, and bonding in archetypal models. <i>Journal of Organometallic Chemistry</i> , 2011 , 696, 4104-4111	2.3	12
171	3-Substituted xanthines as promising candidates for quadruplex formation: computational, synthetic and analytical studies. <i>New Journal of Chemistry</i> , 2011 , 35, 476-482	3.6	28
170	Steric nature of the bite angle. A closer and a broader look. <i>Dalton Transactions</i> , 2011 , 40, 3028-38	4.3	44
169	Selectivity in DNA replication. Interplay of steric shape, hydrogen bonds, Estacking and solvent effects. <i>Chemical Communications</i> , 2011 , 47, 7326-8	5.8	47
168	Chimeric GNA/DNA metal-mediated base pairs. <i>Chemical Communications</i> , 2011 , 47, 11041-3	5.8	29

167	Silver(I)-mediated Hoogsteen-type base pairs. <i>Journal of Inorganic Biochemistry</i> , 2011 , 105, 1398-404	4.2	56
166	Regioselectivity in Electrophilic Aromatic Substitution: Insights from Interaction Energy Decomposition Potentials. <i>European Journal of Organic Chemistry</i> , 2011 , 2011, 2958-2968	3.2	14
165	Steric effects on alkyl cation affinities of maingroup-element hydrides. <i>Journal of Computational Chemistry</i> , 2011 , 32, 681-8	3.5	14
164	Inter- and intramolecular dispersion interactions. <i>Journal of Computational Chemistry</i> , 2011 , 32, 1117-27	3.5	32
163	Contiguous metal-mediated base pairs comprising two Ag(I) ions. <i>Chemistry - A European Journal</i> , 2011 , 17, 6533-44	4.8	104
162	Remote communication in a DNA-based nanoswitch. <i>Chemistry - A European Journal</i> , 2011 , 17, 8816-8	4.8	18
161	Telomere structure and stability: covalency in hydrogen bonds, not resonance assistance, causes cooperativity in guanine quartets. <i>Chemistry - A European Journal</i> , 2011 , 17, 12612-22	4.8	114
160	Radon hydrides: structure and bonding. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 2222-7	3.6	35
159	Neutral and positively charged new purine tetramer structures: a computational study of xanthine and uric acid derivatives. <i>New Journal of Chemistry</i> , 2011 , 35, 119-126	3.6	15
158	Aromaticity and activation strain analysis of [3 + 2] cycloaddition reactions between group 14 heteroallenes and triple bonds. <i>Journal of Organic Chemistry</i> , 2011 , 76, 2310-4	4.2	80
157	A donor-functionalized, silyl-substituted pentadienyllithium: structural insight from experiment and theory. <i>Chemical Communications</i> , 2011 , 47, 6162-4	5.8	13
156	Alkali-metal-supported bismuth polyhedra-principles and theoretical studies. <i>Inorganic Chemistry</i> , 2011 , 50, 5755-62	5.1	7
155	Catalyst selection based on intermediate stability measured by mass spectrometry. <i>Nature Chemistry</i> , 2010 , 2, 417-21	17.6	70
154	Methyl cation affinities of neutral and anionic maingroup-element hydrides: trends across the periodic table and correlation with proton affinities. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 7604-8	2.8	26
153	Density Functional Calculations of E2 and SN2 Reactions: Effects of the Choice of Method, Algorithm, and Numerical Accuracy. <i>Journal of Chemical Theory and Computation</i> , 2010 , 6, 3145-52	6.4	26
152	C(CN)5[Itransition state or intermediate?. <i>Mendeleev Communications</i> , 2010 , 20, 72-73	1.9	5
151	Scope and limitations of an efficient four-component reaction for dihydropyridin-2-ones. <i>Journal of Organic Chemistry</i> , 2010 , 75, 1723-32	4.2	26
150	The activation strain model of chemical reactivity. Organic and Biomolecular Chemistry, 2010, 8, 3118-27	3.9	506

(2009-2010)

149	Adenine versus guanine quartets in aqueous solution: dispersion-corrected DFT study on the differences in Estacking and hydrogen-bonding behavior. <i>Theoretical Chemistry Accounts</i> , 2010 , 125, 245-252	1.9	110
148	Differential stabilization of adenine quartets by anions and cations. <i>Journal of Biological Inorganic Chemistry</i> , 2010 , 15, 387-97	3.7	16
147	Halogen versus halide electronic structure. <i>Science China Chemistry</i> , 2010 , 53, 210-215	7.9	15
146	Comment on "The interplay between steric and electronic effects in SN2 reactions". <i>Chemistry - A European Journal</i> , 2010 , 16, 5538-41; author reply 5542-3	4.8	19
145	Tandem mass spectrometry of silver-adducted ferrocenyl catalyst complexes. <i>Journal of Mass Spectrometry</i> , 2010 , 45, 1332-43	2.2	7
144	Stacked DNA-base quartets: Structure, chemistry and computational intricacies. <i>Procedia Computer Science</i> , 2010 , 1, 1147-1148	1.6	1
143	A new all-round density functional based on spin states and S(N)2 barriers. <i>Journal of Chemical Physics</i> , 2009 , 131, 094103	3.9	104
142	Switching between OPTX and PBE exchange functionals. <i>Journal of Computational Methods in Sciences and Engineering</i> , 2009 , 9, 69-77	0.3	18
141	Rare tautomers of 1-methyluracil and 1-methylthymine: tuning relative stabilities through coordination to PtII complexes. <i>Chemistry - A European Journal</i> , 2009 , 15, 209-18	4.8	29
140	Dihydrogen bonding: donor-acceptor bonding (AHHX) versus the H2 molecule (A-H2-X). <i>Chemistry - A European Journal</i> , 2009 , 15, 5814-22	4.8	31
139	The steric nature of the bite angle. Chemistry - A European Journal, 2009, 15, 6112-5	4.8	54
138	Double group transfer reactions: role of activation strain and aromaticity in reaction barriers. <i>Chemistry - A European Journal</i> , 2009 , 15, 13022-32	4.8	72
137	Homolytic versus heterolytic dissociation of alkalimetal halides: the effect of microsolvation. <i>ChemPhysChem</i> , 2009 , 10, 2955-65	3.2	13
136	Alkali Metal Complexes of Silyl-Substituted ansa-(Tris)allyl Ligands: Metal-, Co-Ligand- and Substituent-Dependent Stereochemistry. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 4157-41	6 7 ·3	15
135	Role of the variable active site residues in the function of thioredoxin family oxidoreductases. <i>Journal of Computational Chemistry</i> , 2009 , 30, 710-24	3.5	11
134	A ditopic ion-pair receptor based on stacked nucleobase quartets. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 3285-7	16.4	64
133	Hypervalent carbon atom: "freezing" the S(N)2 transition state. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 6469-71	16.4	44
132	Electronic communication through mono and multinuclear gold(I) complexes. <i>International Journal of Quantum Chemistry</i> , 2009 , 109, 2507-2519	2.1	4

131	Bonding capabilities of imidazol-2-ylidene ligands in group-10 transition-metal chemistry. <i>Coordination Chemistry Reviews</i> , 2009 , 253, 678-686	23.2	116
130	A helicoid ferrocene. <i>Inorganic Chemistry</i> , 2009 , 48, 2714-6	5.1	19
129	Bonding of xenon hydrides. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 9700-6	2.8	37
128	Structural interpretation of J coupling constants in guanosine and deoxyguanosine: modeling the effects of sugar pucker, backbone conformation, and base pairing. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 8379-86	2.8	14
127	Stepwise walden inversion in nucleophilic substitution at phosphorus. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 259-67	3.6	41
126	Bond activation by group-11 transition-metal cations. <i>Canadian Journal of Chemistry</i> , 2009 , 87, 806-817	0.9	14
125	Trends and anomalies in H-AH(n) and CH(3)-AH(n) bond strengths (AH(n) = CH3, NH2, OH, F). <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 10317-22	3.6	10
124	Nucleophilicity and leaving-group ability in frontside and backside S(N)2 reactions. <i>Journal of Organic Chemistry</i> , 2008 , 73, 7290-9	4.2	170
123	Reaction Coordinates and the Transition-Vector Approximation to the IRC. <i>Journal of Chemical Theory and Computation</i> , 2008 , 4, 920-8	6.4	34
122	Linkage Isomerism of Nitriles in Rhodium Half-Sandwich Metallacycles. <i>Organometallics</i> , 2008 , 27, 4028	-4,0330	18
121	E2 and SN2 Reactions of X(-) + CH3CH2X (X = F, Cl); an ab Initio and DFT Benchmark Study. <i>Journal of Chemical Theory and Computation</i> , 2008 , 4, 929-40	6.4	76
120	Aromaticity and antiaromaticity in 4-, 6-, 8-, and 10-membered conjugated hydrocarbon rings. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 12816-22	2.8	35
119	Bonding of Imidazol-2-ylidene Ligands in Nickel Complexes. <i>Organometallics</i> , 2008 , 27, 3410-3414	3.8	51
118	Hydrogen bonding of 3- and 5-methyl-6-aminouracil with natural DNA bases. <i>New Journal of Chemistry</i> , 2008 , 32, 1981	3.6	12
117	Role of s-p orbital mixing in the bonding and properties of second-period diatomic molecules. Journal of Physical Chemistry A, 2008, 112, 2437-46	2.8	22
116	Mechanism of thioredoxin-catalyzed disulfide reduction. Activation of the buried thiol and role of the variable active-site residues. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 2511-23	3.4	34
115	Intercalation of daunomycin into stacked DNA base pairs. DFT study of an anticancer drug. <i>Journal of Biomolecular Structure and Dynamics</i> , 2008 , 26, 115-30	3.6	41
114	Aromaticity in Heterocyclic and Inorganic Benzene Analogues. <i>Australian Journal of Chemistry</i> , 2008 , 61, 209	1.2	25

113	Hypervalent silicon versus carbon: ball-in-a-box model. Chemistry - A European Journal, 2008, 14, 819-28	3 4.8	82
112	Hypervalent versus nonhypervalent carbon in noble-gas complexes. <i>Chemistry - A European Journal</i> , 2008 , 14, 6901-11	4.8	36
111	PyFragStreamlining your reaction path analysis. <i>Journal of Computational Chemistry</i> , 2008 , 29, 312-5	3.5	41
110	QUILD: QUantum-regions interconnected by local descriptions. <i>Journal of Computational Chemistry</i> , 2008 , 29, 724-34	3.5	114
109	Nucleophilic Substitution at C, Si and P: How Solvation Affects the Shape of Reaction Profiles. <i>European Journal of Organic Chemistry</i> , 2008 , 2008, 649-654	3.2	57
108	Attractive and convincing. Angewandte Chemie - International Edition, 2008, 47, 7172	16.4	2
107	Tricarbonylchromium complexes of [5]- and [6]metacyclophane: an experimental and theoretical study. <i>Tetrahedron</i> , 2008 , 64, 11641-11646	2.4	10
106	Frontside versus Backside S(N)2 substitution at group 14 atoms: origin of reaction barriers and reasons for their absence. <i>Chemistry - an Asian Journal</i> , 2008 , 3, 1783-92	4.5	52
105	Watson-crick base pairs with thiocarbonyl groups: How sulfur changes the hydrogen bonds in DNA. <i>Open Chemistry</i> , 2008 , 6, 15-21	1.6	6
104	Highly polar bonds and the meaning of covalency and ionicitystructure and bonding of alkali metal hydride oligomers. <i>Faraday Discussions</i> , 2007 , 135, 451-68; discussion 489-506	3.6	16
103	Cyclotrimerization Reactions Catalyzed by Rhodium(I) Half-Sandwich Complexes: A Mechanistic Density Functional Study. <i>Organometallics</i> , 2007 , 26, 3816-3830	3.8	68
102	Didehydrophenanthrenes: structure, singlet-triplet splitting, and aromaticity. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 5063-70	2.8	30
101	Table salt and other alkali metal chloride oligomers: structure, stability, and bonding. <i>Inorganic Chemistry</i> , 2007 , 46, 5411-8	5.1	17
100	Conformational behavior of basic monomeric building units of glycosaminoglycans: isolated systems and solvent effect. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 2313-21	3.4	12
99	Catalytic Carbon-Halogen Bond Activation: Trends in Reactivity, Selectivity, and Solvation. <i>Journal of Chemical Theory and Computation</i> , 2007 , 3, 514-29	6.4	99
98	Kohn-Sham Density Functional Theory: Predicting and Understanding Chemistry. <i>Reviews in Computational Chemistry</i> , 2007 , 1-86		466
97	Polycyclic benzenoids: why kinked is more stable than straight. <i>Journal of Organic Chemistry</i> , 2007 , 72, 1134-42	4.2	177
96	Outer valence orbital response to proton positions in prototropic tautomers of adenine. <i>Journal of Computational Methods in Sciences and Engineering</i> , 2007 , 6, 251-267	0.3	2

95	Aromaticity: molecular-orbital picture of an intuitive concept. <i>Chemistry - A European Journal</i> , 2007 , 13, 6321-8	4.8	70
94	Aromaticity: Molecular-Orbital Picture of an Intuitive Concept. <i>Chemistry - A European Journal</i> , 2007 , 13, 8371-8371	4.8	2
93	Covalent versus ionic bonding in alkalimetal fluoride oligomers. <i>Journal of Computational Chemistry</i> , 2007 , 28, 238-50	3.5	14
92	Energy landscapes of nucleophilic substitution reactions: a comparison of density functional theory and coupled cluster methods. <i>Journal of Computational Chemistry</i> , 2007 , 28, 1551-1560	3.5	87
91	Proton Affinities in Water of Maingroup-Element Hydrides Effects of Hydration and Methyl Substitution. <i>European Journal of Inorganic Chemistry</i> , 2007 , 2007, 3646-3654	2.3	82
90	Transition-state energy and position along the reaction coordinate in an extended activation strain model. <i>ChemPhysChem</i> , 2007 , 8, 1170-81	3.2	158
89	Nucleophilic substitution at phosphorus centers (SN2@p). ChemPhysChem, 2007, 8, 2452-63	3.2	55
88	Hypervalence and the delocalizing versus localizing propensities of H B , Li B , CH B and SiH B. <i>Structural Chemistry</i> , 2007 , 18, 813-819	1.8	23
87	Pi-pi stacking tackled with density functional theory. <i>Journal of Molecular Modeling</i> , 2007 , 13, 1245-57	2	111
86	Nucleophilic substitution at silicon (SN2@Si) via a central reaction barrier. <i>Journal of Organic Chemistry</i> , 2007 , 72, 2201-7	4.2	142
85	Hydrogen-hydrogen bonding in planar biphenyl, predicted by atoms-in-molecules theory, does not exist. <i>Chemistry - A European Journal</i> , 2006 , 12, 2889-95	4.8	280
84	Supramolecular switches based on the guanine-cytosine (GC) Watson-Crick pair: effect of neutral and ionic substituents. <i>Chemistry - A European Journal</i> , 2006 , 12, 3032-42	4.8	45
83	A model of the chemical bond must be rooted in quantum mechanics, provide insight, and possess predictive power. <i>Chemistry - A European Journal</i> , 2006 , 12, 2902-5	4.8	191
82	Orbital overlap and chemical bonding. <i>Chemistry - A European Journal</i> , 2006 , 12, 9196-216	4.8	254
81	Alpha-stabilization of carbanions: fluorine is more effective than the heavier halogens. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 823-6	16.4	39
80	Proton affinities of maingroup-element hydrides and noble gases: trends across the periodic table, structural effects, and DFT validation. <i>Journal of Computational Chemistry</i> , 2006 , 27, 1486-93	3.5	38
79	Nanoswitches based on DNA base pairs: why adenine-thymine is less suitable than guanine-cytosine. <i>ChemPhysChem</i> , 2006 , 7, 1971-9	3.2	18
78	Estabilisierung von Carbanionen: Fluor Bertrifft die schwereren Halogene. <i>Angewandte Chemie</i> , 2006 , 118, 838-841	3.6	15

77	WatsonLirick hydrogen bonds: nature and role in DNA replication 2006 , 79-97		2
76	Adenine tautomers: relative stabilities, ionization energies, and mismatch with cytosine. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 4012-20	2.8	111
75	Nucleophilic substitution at phosphorus (S(N)2@P): disappearance and reappearance of reaction barriers. <i>Journal of the American Chemical Society</i> , 2006 , 128, 10738-44	16.4	126
74	Oxidative Addition versus Dehydrogenation of Methane, Silane, and Heavier AH4 Congeners Reacting with Palladium. <i>Organometallics</i> , 2006 , 25, 4260-4268	3.8	37
73	Covalency in Highly Polar Bonds. Structure and Bonding of Methylalkalimetal Oligomers (CH3M)n (M = Li-Rb; n = 1, 4). <i>Journal of Chemical Theory and Computation</i> , 2006 , 2, 965-80	6.4	43
72	Bonding in methylalkalimetals (CH(3)M)(n) (M = Li, Na, K; n = 1, 4). Agreement and divergences between AIM and ELF analyses. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 7189-98	3.4	32
71	Oxidative addition of hydrogen halides and dihalogens to Pd. Trends in reactivity and relativistic effects. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 7943-51	2.8	9
70	Oxidative Addition of the Chloromethane C-Cl Bond to Pd, an ab Initio Benchmark and DFT Validation Study. <i>Journal of Chemical Theory and Computation</i> , 2006 , 2, 322-35	6.4	77
69	Proton Affinities of Anionic Bases: Trends Across the Periodic Table, Structural Effects, and DFT Validation. <i>Journal of Chemical Theory and Computation</i> , 2006 , 2, 281-7	6.4	46
68	Orbital interactions and charge redistribution in weak hydrogen bonds: Watsontrick GC mimic involving C?H proton donor and F proton acceptor groups. <i>International Journal of Quantum Chemistry</i> , 2006 , 106, 2428-2443	2.1	8
67	Optimization of strong and weak coordinates. <i>International Journal of Quantum Chemistry</i> , 2006 , 106, 2536-2544	2.1	92
66	Performance of various density functionals for the hydrogen bonds in DNA base pairs. <i>Chemical Physics Letters</i> , 2006 , 426, 415-421	2.5	141
65	Theoretical study of structure, pKa, lipophilicity, solubility, absorption, and polar surface area of some centrally acting antihypertensives. <i>Bioorganic and Medicinal Chemistry</i> , 2006 , 14, 1715-28	3.4	70
64	Oxidative addition to main group versus transition metals: Insights from the Activation Strain model. <i>Journal of Organometallic Chemistry</i> , 2006 , 691, 4341-4349	2.3	39
63	Structure and bonding of methyl alkali metal molecules. <i>Journal of Molecular Modeling</i> , 2006 , 12, 563-8	2	8
62	Activation of H-H, C-H, C-C and C-Cl Bonds by Pd and PdCl(-). Understanding Anion Assistance in C-X Bond Activation. <i>Journal of Chemical Theory and Computation</i> , 2005 , 1, 286-98	6.4	129
61	Fragment-oriented design of catalysts based on the activation strain model. <i>Molecular Physics</i> , 2005 , 103, 995-998	1.7	32
60	Oxidative addition of the fluoromethane C-F bond to Pd. An ab initio benchmark and DFT validation study. <i>Journal of Physical Chemistry A</i> , 2005 , 109, 9685-99	2.8	57

59	Activation of CH, CL and Clbonds by Pd and cis-Pd(CO)2I2. Catalyst ubstrate adaptation. Journal of Organometallic Chemistry, 2005 , 690, 2191-2199	2.3	24
58	DFT benchmark study for the oxidative addition of CH4 to Pd. Performance of various density functionals. <i>Chemical Physics</i> , 2005 , 313, 261-270	2.3	87
57	Multicomponent synthesis of 2-imidazolines. <i>Journal of Organic Chemistry</i> , 2005 , 70, 3542-53	4.2	141
56	Absolute rates of hole transfer in DNA. <i>Journal of the American Chemical Society</i> , 2005 , 127, 14894-903	16.4	303
55	Oxidative addition of the ethane C-C bond to Pd. An ab initio benchmark and DFT validation study. Journal of Computational Chemistry, 2005 , 26, 1006-20	3.5	63
54	Ab initio and DFT benchmark study for nucleophilic substitution at carbon (SN2@C) and silicon (SN2@Si). <i>Journal of Computational Chemistry</i> , 2005 , 26, 1497-504	3.5	120
53	Substituent Effects on Hydrogen Bonding in Watson Trick Base Pairs. A Theoretical Study. <i>Structural Chemistry</i> , 2005 , 16, 211-221	1.8	27
52	High-resolution infrared spectroscopy of the charge-transfer complex [Ar-N2]+: a combined experimental/theoretical study. <i>Journal of Chemical Physics</i> , 2005 , 123, 144305	3.9	8
51	Hydrogen bonds of RNA are stronger than those of DNA, but NMR monitors only presence of methyl substituent in uracil/thymine. <i>Journal of the American Chemical Society</i> , 2004 , 126, 16718-9	16.4	81
50	Hydrogen bonding in mimics of Watson-Crick base pairs involving C-H proton donor and F proton acceptor groups: a theoretical study. <i>ChemPhysChem</i> , 2004 , 5, 481-7	3.2	41
49	Voronoi deformation density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis. <i>Journal of Computational Chemistry</i> , 2004 , 25, 189-210	3.5	782
48	Ab initio benchmark study for the oxidative addition of CH4 to Pd: importance of basis-set flexibility and polarization. <i>Journal of Chemical Physics</i> , 2004 , 121, 9982-92	3.9	66
47	Activation of HH, CH, CC, and CCl Bonds by Pd(0). Insight from the Activation Strain Model. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 8460-8466	2.8	111
46	The rotation barrier in ethane. <i>Nachrichten Aus Der Chemie</i> , 2004 , 52, 581-581	0.1	4
45	The Case for Steric Repulsion Causing the Staggered Conformation of Ethane. <i>Angewandte Chemie</i> , 2003 , 115, 4315-4320	3.6	63
44	The case for steric repulsion causing the staggered conformation of ethane. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 4183-8; discussion 4188-94	16.4	204
43	Charge transport in columnar stacked triphenylenes: Effects of conformational fluctuations on charge transfer integrals and site energies. <i>Journal of Chemical Physics</i> , 2003 , 119, 9809-9817	3.9	346
42	Mapping the sites for selective oxidation of guanines in DNA. <i>Journal of the American Chemical Society</i> , 2003 , 125, 13658-9	16.4	86

(1999-2003)

41	Orbital interactions and charge redistribution in weak hydrogen bonds: The Watson@rick AT mimic adenine-2,4-difluorotoluene. <i>Journal of Chemical Physics</i> , 2003 , 119, 4262-4273	3.9	34
40	Buchbesprechung: Computational Chemistry. A Practical Guide for Applying Techniques to Real World Problems. Von David Young. <i>Angewandte Chemie</i> , 2002 , 114, 377-378	3.6	
39	Orbitalwechselwirkungen in starken und schwachen Wasserstoffbrüken sind essentiell füdie DNA-Replikation. <i>Angewandte Chemie</i> , 2002 , 114, 2194	3.6	18
38	Orbital Interactions in Strong and Weak Hydrogen Bonds are Essential for DNA Replication. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 2092	16.4	70
37	Orbital Interactions in Hydrogen Bonds Important for Cohesion in Molecular Crystals and Mismatched Pairs of DNA Bases. <i>Crystal Growth and Design</i> , 2002 , 2, 239-245	3.5	49
36	The short N [bond] F bond in N(2)F(+) and how Pauli repulsion influences bond lengths. Theoretical study of N(2)X(+), NF(3)X(+), and NH(3)X(+) (X [double bond] F, H). <i>Journal of the American Chemical Society</i> , 2002 , 124, 1500-5	16.4	43
35	Orbital interactions in strong and weak hydrogen bonds are essential for DNA replication. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 2092-5	16.4	8
34	Base-induced 1,4-elimination: insights from theory and mass spectrometry. <i>Mass Spectrometry Reviews</i> , 2001 , 20, 347-61	11	24
33	Chemistry with ADF. Journal of Computational Chemistry, 2001, 22, 931-967	3.5	7628
32	Oxidative addition of Pd to CH, CI and CI bonds: Importance of relativistic effects in DFT calculations. <i>Journal of Chemical Physics</i> , 2001 , 115, 4030-4040	3.9	131
31	(Ph4P)S6A Compound Containing the Cyclic Radical Anion S6.□ <i>Angewandte Chemie - International Edition</i> , 2000 , 39, 4580-4582	16.4	12
30	The Nature of the Transition Metallarbonyl Bond and the Question about the Valence Orbitals of Transition Metals. A Bond-Energy Decomposition Analysis of TM(CO)6q(TMq= Hf2-, Ta-, W, Re+, Os2+, Ir3+)\(\Bar{1}\) Journal of the American Chemical Society, 2000 , 122, 6449-6458	16.4	218
29	Hydrogen Bonding in DNA Base Pairs: Reconciliation of Theory and Experiment. <i>Journal of the American Chemical Society</i> , 2000 , 122, 4117-4128	16.4	379
28	Structure and bonding of transition metal-boryl compounds. Theoretical study of		
	[(PH3)2(CO)ClOs-BR2] and [(PH3)2(CO)2ClOs-BR2] (BR2 = BH2, BF2, B(OH)2, B(OCH=CHO), Bcat). Inorganic Chemistry, 2000 , 39, 4776-85	5.1	36
27	[(PH3)2(CO)ClOs-BR2] and [(PH3)2(CO)2ClOs-BR2] (BR2 = BH2, BF2, B(OH)2, B(OCH=CHO), Bcat).	3.5	36 438
	[(PH3)2(CO)ClOs-BR2] and [(PH3)2(CO)2ClOs-BR2] (BR2 = BH2, BF2, B(OH)2, B(OCH=CHO), Bcat). Inorganic Chemistry, 2000, 39, 4776-85 Understanding reactivity with KohnBham molecular orbital theory: E2BN2 mechanistic spectrum		
27	[(PH3)2(CO)ClOs-BR2] and [(PH3)2(CO)2ClOs-BR2] (BR2 = BH2, BF2, B(OH)2, B(OCH=CHO), Bcat). Inorganic Chemistry, 2000, 39, 4776-85 Understanding reactivity with KohnBham molecular orbital theory: E2BN2 mechanistic spectrum and other concepts. Journal of Computational Chemistry, 1999, 20, 114-128 Koordinationseigenschaften der isolobalen Phosphaniminatound Cyclopentadienyl-Liganden in TiCl3(NPH3), TiCl3Cp, ReO3(NPH3) und ReO3Cp. Zeitschrift Fur Anorganische Und Allgemeine	3.5	438

23	The Nature of the Hydrogen Bond in DNA Base Pairs: The Role of Charge Transfer and Resonance Assistance. <i>Chemistry - A European Journal</i> , 1999 , 5, 3581-3594	4.8	303
22	Charge Transfer and Environment Effects Responsible for Characteristics of DNA Base Pairing. <i>Angewandte Chemie - International Edition</i> , 1999 , 38, 2942-2945	16.4	103
21	Charge Transfer and Environment Effects Responsible for Characteristics of DNA Base Pairing. Angewandte Chemie - International Edition, 1999 , 38, 2942-2945	16.4	8
20	Alternatives to the CO Ligand: Coordination of the Isolobal Analogues BF, BNH2, BN(CH3)2, and BOIn Mono- and Binuclear First-Row Transition Metal Complexes. <i>Chemistry - A European Journal</i> , 1998 , 4, 210-221	4.8	165
19	Nature of the Three-Electron Bond in H2S?SH2+ [] Journal of Physical Chemistry A, 1998, 102, 9549-9553	2.8	96
18	Might BF and BNR2 be alternatives to CO? A theoretical quest for new ligands in organometallic chemistry. <i>New Journal of Chemistry</i> , 1998 , 22, 1-3	3.6	58
17	Is CO a Special Ligand in Organometallic Chemistry? Theoretical Investigation of AB, Fe(CO)4AB, and Fe(AB)5 (AB = N2, CO, BF, SiO). <i>Inorganic Chemistry</i> , 1998 , 37, 1080-1090	5.1	149
16	HorbiddenIFour-Center Reactions: Molecular Orbital Considerations for N2 + N2 and N2 + N2+. Journal of Physical Chemistry A, 1997 , 101, 8255-8263	2.8	15
15	CH3Ūs Planar Due to Hℍ Steric Repulsion. Theoretical Study of MH3Ūand MH3Cl (M = C, Si, Ge, Sn). <i>Organometallics</i> , 1996 , 15, 1477-1487	3.8	62
14	Gas-Phase Base-Induced 1,4-Eliminations: Occurrence of Single-, Double-, and Triple-Well E1cb Mechanisms J. Am. Chem. Soc. 1995, 117, 9889\(\begin{aligned}	16.4	3
13	The Carbon[lithium Electron Pair Bond in (CH3Li)n (n = 1, 2, 4). Organometallics, 1996, 15, 2923-2931	3.8	249
12	The Effect of Microsolvation on E2 and SN2 Reactions: Theoretical Study of the Model System FIB-C2H5F + nHF. <i>Chemistry - A European Journal</i> , 1996 , 2, 196-207	4.8	70
11	Structure and Stability of the Li2CN Molecule. An Experimental and ab Initio Study. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 6477-6482		23
10	Gas-Phase Base-Induced 1,4-Eliminations: Occurrence of Single-, Double-, and Triple-Well E1cb Mechanisms. <i>Journal of the American Chemical Society</i> , 1995 , 117, 9889-9899	16.4	25
9	Oxidative Insertion as Frontside SN2 Substitution: A Theoretical Study of the Model Reaction System Pd + CH3Cl. <i>Organometallics</i> , 1995 , 14, 2288-2296	3.8	88
8	Theoretical investigation of the relative stabilities of XSSX and X2SS isomers (X = F, Cl, H, and CH3). Journal of Computational Chemistry, 1995 , 16, 465-477	3.5	48
7	Theoretical investigation on base-induced 1,2-eliminations in the model system fluoride ion + fluoroethane. The role of the base as a catalyst. <i>Journal of the American Chemical Society</i> , 1993 , 115, 9160-9173	16.4	81
6	Base-induced imine-forming 1,2-elimination reactions in the gas phase. <i>Journal of Organic Chemistry</i> , 1993 , 58, 2436-2441	4.2	14

LIST OF PUBLICATIONS

5	Central bond in the three CN.cntdot.dimers NC-CN, CN-CN and CN-NC: electron pair bonding and Pauli repulsion effects. <i>The Journal of Physical Chemistry</i> , 1992 , 96, 4864-4873		165
4	Multi-step processes in gas-phase reactions of halomethyl anions XCH2[[X = Cl,Br] with CH3X and NH3. <i>Journal of Physical Organic Chemistry</i> , 1992 , 5, 179-190	2.1	16
3	Isolated excited electronic states in the unimolecular gas-phase ion dissociation processes of the radical cations of isocyanogen and cyanogen. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1991 , 103, 157-168		13
2	Unusual reactivity of small cyclophanes: nucleophilic attack on 11-chloro- and 8,11-dichloro[5]metacyclophane. <i>Journal of the American Chemical Society</i> , 1990 , 112, 6638-6646	16.4	43

Structure and bonding of methyl alkali metal molecules 563-568