Cyrus Khandanpour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9410170/publications.pdf

Version: 2024-02-01

430442 344852 1,513 86 18 36 citations g-index h-index papers 89 89 89 2589 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Dominant-Negative (i) GFI1B (i) Mutation in the Gray Platelet Syndrome. New England Journal of Medicine, 2014, 370, 245-253.	13.9	152
2	Functional inhibition of mesenchymal stromal cells in acute myeloid leukemia. Leukemia, 2016, 30, 683-691.	3.3	119
3	The multiple myeloma microenvironment is defined by an inflammatory stromal cell landscape. Nature Immunology, 2021, 22, 769-780.	7.0	107
4	Origin of the brush cell lineage in the mouse intestinal epithelium. Developmental Biology, 2012, 362, 194-218.	0.9	103
5	Acute myeloid leukemia cells polarize macrophages towards a leukemia supporting state in a Growth factor independence 1 dependent manner. Haematologica, 2016, 101, 1216-1227.	1.7	99
6	From cytopenia to leukemia: the role of Gfi1 and Gfi1b in blood formation. Blood, 2015, 126, 2561-2569.	0.6	89
7	Evidence that Growth factor independence 1b regulates dormancy and peripheral blood mobilization of hematopoietic stem cells. Blood, 2010, 116, 5149-5161.	0.6	66
8	Growth Factor Independence 1 Antagonizes a p53-Induced DNA Damage Response Pathway in Lymphoblastic Leukemia. Cancer Cell, 2013, 23, 200-214.	7.7	65
9	Growth factor independence 1 (Gfi1) as a regulator of lymphocyte development and activation. Seminars in Immunology, 2011, 23, 368-378.	2.7	55
10	LSD1 inhibition by tranylcypromine derivatives interferes with GFI1-mediated repression of PU.1 target genes and induces differentiation in AML. Leukemia, 2019, 33, 1411-1426.	3.3	53
11	A variant allele of Growth Factor Independence 1 (GFI1) is associated with acute myeloid leukemia. Blood, 2010, 115, 2462-2472.	0.6	46
12	Growth factor independent 1b (Gfi1b) and a new splice variant of Gfi1b are highly expressed in patients with acute and chronic leukemia. International Journal of Hematology, 2009, 89, 422-430.	0.7	43
13	GFI1 facilitates efficient DNA repair by regulating PRMT1 dependent methylation of MRE11 and 53BP1. Nature Communications, 2018, 9, 1418.	5.8	42
14	The human GFI136N variant induces epigenetic changes at the Hoxa9 locus and accelerates K-RAS driven myeloproliferative disorder in mice. Blood, 2012, 120, 4006-4017.	0.6	40
15	GFI1 as a novel prognostic and therapeutic factor for AML/MDS. Leukemia, 2016, 30, 1237-1245.	3.3	37
16	Growth Factor Independence 1 Protects Hematopoietic Stem Cells Against Apoptosis but Also Prevents the Development of a Myeloproliferative-Like Disease. Stem Cells, 2011, 29, 376-385.	1.4	34
17	Zinc Finger Protein Gfi1 Controls the Endotoxin-Mediated Toll-Like Receptor Inflammatory Response by Antagonizing NF-κB p65. Molecular and Cellular Biology, 2010, 30, 3929-3942.	1.1	28
18	Myelodysplastic syndromes and bone loss in mice and men. Leukemia, 2017, 31, 1003-1007.	3.3	25

#	Article	IF	Citations
19	Gfi1b: a key player in the genesis and maintenance of acute myeloid leukemia and myelodysplastic syndrome. Haematologica, 2018, 103, 614-625.	1.7	21
20	Role of GFI1 in Epigenetic Regulation of MDS and AML Pathogenesis: Mechanisms and Therapeutic Implications. Frontiers in Oncology, 2019, 9, 824.	1.3	21
21	Addition of Isatuximab to Lenalidomide, Bortezomib and Dexamethasone As Induction Therapy for Newly-Diagnosed, Transplant-Eligible Multiple Myeloma Patients: The Phase III GMMG-HD7 Trial. Blood, 2021, 138, 463-463.	0.6	19
22	Epigenetic therapy as a novel approach for GFI136N-associated murine/human AML. Experimental Hematology, 2016, 44, 713-726.e14.	0.2	16
23	Reduced expression but not deficiency of GFI1 causes a fatal myeloproliferative disease in mice. Leukemia, 2019, 33, 110-121.	3.3	16
24	Safety and Preliminary Efficacy Results from a Phase II Study Evaluating Combined BRAF and MEK Inhibition in Relapsed/Refractory Multiple Myeloma (rrMM) Patients with Activating BRAF V600E Mutations: The GMMG-Birma Trial. Blood, 2020, 136, 44-45.	0.6	16
25	A 6-Base Pair in Frame Germline Deletion in Exon 7 Of <i>RET</i> Leads to Increased RET Phosphorylation, ERK Activation, and MEN2A. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 1016-1022.	1.8	14
26	Enforced GFI1 expression impedes human and murine leukemic cell growth. Scientific Reports, 2017, 7, 15720.	1.6	13
27	GFI1 is required for RUNX1/ETO positive acute myeloid leukemia. Haematologica, 2018, 103, e395-e399.	1.7	13
28	Virus-specific antibodies allow viral replication in the marginal zone, thereby promoting CD8+ T-cell priming and viral control. Scientific Reports, 2016, 6, 19191.	1.6	12
29	Threshold Levels of Gfi1 Maintain E2A Activity for B Cell Commitment via Repression of Id1. PLoS ONE, 2016, 11, e0160344.	1.1	12
30	The zinc finger protein Gfi1 is implicated in the regulation of IgG2b production and the expression of \hat{I}^3 2b germline transcripts. European Journal of Immunology, 2008, 38, 3004-3014.	1.6	11
31	GFI136N as a therapeutic and prognostic marker for myelodysplastic syndrome. Experimental Hematology, 2016, 44, 590-595.e1.	0.2	11
32	High Metabolic Dependence on Oxidative Phosphorylation Drives Sensitivity to Metformin Treatment in MLL/AF9 Acute Myeloid Leukemia. Cancers, 2022, 14, 486.	1.7	11
33	The Growth Factor Independence 1 variant form GFI136N Predisposes to Acute Myeloid Leukemia by Inducing Epigenetic Changes in Oncogenes Such As Hoxa9. Blood, 2011, 118, 223-223.	0.6	10
34	Dexamethasoneâ€mediated inhibition of Notch signalling blocks the interaction of leukaemia and mesenchymal stromal cells. British Journal of Haematology, 2022, 196, 995-1006.	1.2	10
35	Gfi1 as a regulator of p53 and a therapeutic target for ALL. Oncotarget, 2013, 4, 374-375.	0.8	9
36	Bcr-TMP, a Novel Nanomolar-Active Compound That Exhibits Both MYB- and Microtubule-Inhibitory Activity. Cancers, 2022, 14, 43.	1.7	9

#	Article	IF	CITATIONS
37	A synthetic covalent ligand of the C/EBP \hat{l}^2 transactivation domain inhibits acute myeloid leukemia cells. Cancer Letters, 2022, 530, 170-180.	3.2	8
38	GFI1B acts as a metabolic regulator in hematopoiesis and acute myeloid leukemia. Leukemia, 2022, 36, 2196-2207.	3.3	7
39	Structural Variants as a Basis for Targeted Therapies in Hematological Malignancies. Frontiers in Oncology, 2019, 9, 839.	1.3	6
40	Kinetics of Renal Function during Induction in Newly Diagnosed Multiple Myeloma: Results of Two Prospective Studies by the German Myeloma Study Group DSMM. Cancers, 2021, 13, 1322.	1.7	6
41	High Frequencies of Anti-Host Reactive CD8+ T Cells Ignore Non-Hematopoietic Antigen after Bone Marrow Transplantation in a Murine Model. Cellular Physiology and Biochemistry, 2016, 38, 1343-1353.	1.1	5
42	Long-term survival and polyclonal immunoglobulin reconstitution after allogeneic stem cell transplantation in multiple myeloma. Annals of Hematology, 2020, 99, 1907-1915.	0.8	4
43	GFI1b As a Novel Oncosuppressor in AML. Blood, 2016, 128, 2717-2717.	0.6	4
44	Prevalence of the GFI1-36N SNP in Multiple Myeloma Patients and Its Impact on the Prognosis. Frontiers in Oncology, 2021, 11, 757664.	1.3	3
45	Characteristics and Outcome of Elderly Patients (>55 Years) with Acute Lymphoblastic Leukemia. Cancers, 2022, 14, 565.	1.7	3
46	Efficacy of Daratumumab-Containing Regimens Among Patients With Multiple Myeloma Progressing on Lenalidomide Maintenance: Retrospective Analysis. Frontiers in Oncology, 2022, 12, 826342.	1.3	3
47	Inhibiting PI3K–AKT–mTOR Signaling in Multiple Myeloma-Associated Mesenchymal Stem Cells Impedes the Proliferation of Multiple Myeloma Cells. Frontiers in Oncology, 0, 12, .	1.3	3
48	Hand â€" foot syndrome: common presentation in an uncommon situation. European Journal of Haematology, 2013, 91, 472-472.	1.1	2
49	Growth factor independence 1 (Gfi1) regulates the AML supporting function of mesenchymal stromal cells. Experimental Hematology, 2017, 53, S90.	0.2	2
50	Curcumin as an Epigenetic Therapeutic Agent in Myelodysplastic Syndromes (MDS). International Journal of Molecular Sciences, 2022, 23, 411.	1.8	2
51	Allogeneic hematopoietic stem cell transplantation for therapy-related myeloid neoplasms following treatment of a lymphoid malignancy. Leukemia and Lymphoma, 2021, 62, 1930-1939.	0.6	1
52	A Variant Allele of the Gene Growth Factor Independence 1 (GFI1) Is Associated with Acute Myeloid Leukemia Blood, 2007, 110, 13-13.	0.6	1
53	A Human Variant of Growth Factor Independence 1 (GFI136N) Predisposes to Myeloid Leukemia In Mice. Blood, 2010, 116, 997-997.	0.6	1
54	A Single Nucleotide Polymorphism Of Growth Factor Independence 1 (GFI136N) is a Novel Prognostic Marker For The Progression Of Myelodysplastic Syndrome To Acute Myeloid Leukemia. Blood, 2013, 122, 2491-2491.	0.6	1

#	Article	IF	CITATIONS
55	A Dominant-Negative GFI1B Mutation in Gray Platelet Syndrome. Blood, 2013, 122, LBA-3-LBA-3.	0.6	1
56	Growth Factor Independence 1b (Gfi1b) Regulates The Commitment, Differentiation and Expansion Of Hematopoietic Stem Cells. Blood, 2013, 122, 2433-2433.	0.6	1
57	Efficacy of Daratumumab Containing Regimens Post Lenalidomide Maintenance in Transplant Eligible Patients: Real-World Experience from the Canadian Myeloma Research Group Database. Blood, 2020, 136, 26-27.	0.6	1
58	GFI1 (growth factor independent 1 transcription repressor). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2012, , .	0.1	0
59	Gfi1 as a new target and predictive marker in AML. Experimental Hematology, 2014, 42, S20.	0.2	0
60	Gfi136N is a prognostic marker and possible target for the progression of MDS to AML. Experimental Hematology, 2014, 42, S42.	0.2	0
61	Low GFI1 expression level drive the development of acute myeloid leukemia and fatal myeloproliferative neoplasia by blocking differentiation and P53-mediated apoptosis. Experimental Hematology, 2016, 44, S71.	0.2	0
62	Gfi1b – a novel oncosuppressor, which restricts number of leukemic stem cells. Experimental Hematology, 2017, 53, S90.	0.2	0
63	Reduced expression of Gfi1 causes a fatal myeloproliferative disease by simultaneously blocking myeloid differentiation and p53 mediated apoptosis. Experimental Hematology, 2017, 53, S106.	0.2	0
64	Curcumin as a Novel Epigenetic Treatment Approach for GFI1-Associated MDS/AML. Experimental Hematology, 2018, 64, S102.	0.2	0
65	CURCUMIN AS A NOVEL EPIGENETIC TREATMENT APPROACH FOR GFI1-ASSOCIATED MDS/AML. Experimental Hematology, 2019, 76, S85.	0.2	0
66	PF215 THE ROLE OF GROWTH FACTOR INDEPENDENCE 1 (GFI1) IN GENOME STABILITY, DNA REPAIR AND LEUKEMIA GENOMIC EVOLUTION. HemaSphere, 2019, 3, 59.	1.2	0
67	Loss of Gfi1 Impedes Development of T-Cell Lymphoma upon Exposure to N-ethyl-N-nitrosourea but Predisposes to Severe Myleodysplastic Changes Blood, 2007, 110, 2221-2221.	0.6	0
68	The Zinc Finger Protein Gfi1 Controls TLR4-Mediated Inflammatory Response by Directly Antagonizing NF-κB Transcription Factor. Blood, 2008, 112, 469-469.	0.6	0
69	Growth Factor Independence 1 (Gfi1) Is An Essential Factor for the Development of Lymphoma. Blood, 2008, 112, 297-297.	0.6	0
70	Growth Factor Independence 1 (Gfi1) Is Required for Initiation, Maintenance, Progression, and Transplantability of Lymphoma Blood, 2009, 114, 447-447.	0.6	0
71	Growth Factor Independence 1 b (Gfi1b) as a New Regulator of Hematopoietic Stem Cell Fate. Blood, 2010, 116, 837-837.	0.6	0
72	Dosage-Sensitive Role of Growth Factor Independence 1 (Gfi1) In the Development of T-Cell Leukemia. Blood, 2010, 116, 706-706.	0.6	0

#	Article	IF	CITATIONS
73	Growth Factor Independent-1 (Gfi1) Is Critically Required for T-Cell Acute Lymphoblastic Leukemia (T-ALL) Tumor Initiation and Maintenance. Blood, 2010, 116, 3156-3156.	0.6	0
74	Growth Factor Independent-1 (Gfi1) As a New Target for Human Leukemia Therapy. Blood, 2011, 118, 560-560.	0.6	0
75	Gfi1 As a Novel Prognostic Marker and Tumor Suppressor In Acute Myeloid Leukemia. Blood, 2013, 122, 2516-2516.	0.6	0
76	Gfi1b-A Novel Tumor Suppressor In Acute Myeloid Leukemia. Blood, 2013, 122, 3795-3795.	0.6	0
77	Dose Dependent Role of Gfi1 in Human MDS and AML and Its Suitability As a Novel Target. Blood, 2014, 124, 777-777.	0.6	0
78	Functional Inhibition of Mesenchymal Stem and Progenitor Cells (MSPC) Significantly Contributes to Hematopoietic Insufficiency with Acute Myeloid Leukemia (AML). Blood, 2014, 124, 3492-3492.	0.6	0
79	Gfil36N As a Novel Marker and Therapeutic Target of MDS and AML. Blood, 2014, 124, 3245-3245.	0.6	0
80	Function of Growth Factor Independence 1 (GFI1) in the Polarization AML-Associated Stroma. Blood, 2014, 124, 4366-4366.	0.6	0
81	A 6 BP in frame germline deletion in exon 7 of the RET gene leads to increased autophosphorylation, MAPK activation and MEN2. Experimental and Clinical Endocrinology and Diabetes, 2015, 122, .	0.6	0
82	the Role of MSCs in the Development of Acute Myeloid Leukemia. Blood, 2016, 128, 2669-2669.	0.6	0
83	Leukaemia Cells Induced Metabolic Alterations in AML Associated Mesenchymal Stem Cells Via Notch Signalling. Blood, 2021, 138, 4347-4347.	0.6	0
84	Characteristics and Outcome of Elderly Patients (& Dearly Street, 55 Years) with Acute Lymphoblastic Leukemia (ALL). Blood, 2021, 138, 3365-3365.	0.6	0
85	Targeting PI3K-AKT-mTOR Signaling in Multiple Myeloma Mesenchymal Stem Cells Mediates Antiproliferative Effect on Myeloma Cells. Blood, 2021, 138, 1600-1600.	0.6	O
86	AML Associated Mesenchymal Stroma Cells Support Growth of AML Cells As a Result of Activated Notch Signaling and This Can be Targeted By Dexamethasone. Blood, 2020, 136, 1-1.	0.6	0