Eckhard Mandelkow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9410098/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of the In Vivo Relationship Between Cerebral Hypometabolism, Tau Deposition, TSPO Expression, and Synaptic Density in a Tauopathy Mouse Model: a Multi-tracer PET Study. Molecular Neurobiology, 2022, 59, 3402-3413.	1.9	10
2	Molecular crowding and RNA synergize to promote phase separation, microtubule interaction, and seeding of Tau condensates. EMBO Journal, 2022, 41, e108882.	3.5	33
3	Unbiased proteomic profiling reveals the IP3R modulator AHCYL1/IRBIT as a novel interactor of microtubule-associated protein tau. Journal of Biological Chemistry, 2022, 298, 101774.	1.6	3
4	Diseaseâ€Associated Tau Phosphorylation Hinders Tubulin Assembly within Tau Condensates. Angewandte Chemie - International Edition, 2021, 60, 726-730.	7.2	57
5	Die krankheitsassoziierte Tauâ€Phosphorylierung behindert die Tubulinpolymerisation in Tauâ€Kondensaten. Angewandte Chemie, 2021, 133, 737-741.	1.6	Ο
6	A current view on Tau protein phosphorylation in Alzheimer's disease. Current Opinion in Neurobiology, 2021, 69, 131-138.	2.0	167
7	Tau and Membranes: Interactions That Promote Folding and Condensation. Frontiers in Cell and Developmental Biology, 2021, 9, 725241.	1.8	27
8	Development of Dâ€enantiomeric peptides as tau aggregation inhibitors directed against the hexapeptide motif PHF6* of tau. Alzheimer's and Dementia, 2021, 17, .	0.4	0
9	FRET-based Tau seeding assay does not represent prion-like templated assembly of Tau filaments. Molecular Neurodegeneration, 2020, 15, 39.	4.4	40
10	Lipid membrane templated misfolding and self-assembly of intrinsically disordered tau protein. Scientific Reports, 2020, 10, 13324.	1.6	32
11	Proteasomal degradation of the intrinsically disordered protein tau at single-residue resolution. Science Advances, 2020, 6, eaba3916.	4.7	31
12	A combinatorial native MS and LC-MS/MS approach reveals high intrinsic phosphorylation of human Tau but minimal levels of other key modifications. Journal of Biological Chemistry, 2020, 295, 18213-18225.	1.6	28
13	Lysine/RNA-interactions drive and regulate biomolecular condensation. Nature Communications, 2019, 10, 2909.	5.8	164
14	Functional networks are impaired by elevated tau-protein but reversible in a regulatable Alzheimer's disease mouse model. Molecular Neurodegeneration, 2019, 14, 13.	4.4	28
15	Mechanisms of Axonal Sorting of Tau and Influence of theÂAxon Initial Segment on Tau Cell Polarity. Advances in Experimental Medicine and Biology, 2019, 1184, 69-77.	0.8	21
16	Tau protein liquid–liquid phase separation can initiate tau aggregation. EMBO Journal, 2018, 37, .	3.5	696
17	Reversible Cation-Selective Attachment and Self-Assembly of Human Tau on Supported Brain Lipid Membranes. Nano Letters, 2018, 18, 3271-3281.	4.5	31
18	The Binding Mode of a Tau Peptide with Tubulin. Angewandte Chemie - International Edition, 2018, 57, 3246-3250.	7.2	43

Eckhard Mandelkow

#	Article	IF	CITATIONS
19	Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimer's Disease. Neuron, 2018, 99, 925-940.e7.	3.8	302
20	Pathological missorting of endogenous MAPT/Tau in neurons caused by failure of protein degradation systems. Autophagy, 2018, 14, 2139-2154.	4.3	22
21	The release and trans-synaptic transmission of Tau via exosomes. Molecular Neurodegeneration, 2017, 12, 5.	4.4	475
22	Extracellular lowâ€n oligomers of tau cause selective synaptotoxicity without affecting cell viability. Alzheimer's and Dementia, 2017, 13, 1270-1291.	0.4	87
23	Liquid–liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nature Communications, 2017, 8, 275.	5.8	552
24	Atypical, non-standard functions of the microtubule associated Tau protein. Acta Neuropathologica Communications, 2017, 5, 91.	2.4	157
25	Tau in physiology and pathology. Nature Reviews Neuroscience, 2016, 17, 22-35.	4.9	1,518
26	FLEXITau: Quantifying Post-translational Modifications of Tau Protein <i>in Vitro</i> and in Human Disease. Analytical Chemistry, 2016, 88, 3704-3714.	3.2	103
27	Age-dependent neuroinflammation and cognitive decline in a novel Ala152Thr-Tau transgenic mouse model of PSP and AD. Acta Neuropathologica Communications, 2016, 4, 17.	2.4	35
28	Analysis of in vivo turnover of tau in a mouse model of tauopathy. Molecular Neurodegeneration, 2015, 10, 55.	4.4	60
29	Structural Impact of Tau Phosphorylation at Threonine 231. Structure, 2015, 23, 1448-1458.	1.6	99
30	Oligomer Formation of Tau Protein Hyperphosphorylated in Cells. Journal of Biological Chemistry, 2014, 289, 34389-34407.	1.6	132
31	Lost after translation: missorting of Tau protein and consequences for Alzheimer disease. Trends in Neurosciences, 2014, 37, 721-732.	4.2	221
32	Neuronal activity regulates extracellular tau in vivo. Journal of Experimental Medicine, 2014, 211, 387-393.	4.2	429
33	Amyloid-β oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin. EMBO Journal, 2013, 32, 2920-2937.	3.5	222
34	The fuzzy coat of pathological human Tau fibrils is a two-layered polyelectrolyte brush. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E313-21.	3.3	148
35	Phosphorylation of Human Tau Protein by Microtubule Affinity-Regulating Kinase 2. Biochemistry, 2013, 52, 9068-9079.	1.2	65
36	Biochemistry and Cell Biology of Tau Protein in Neurofibrillary Degeneration. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006247-a006247.	2.9	608

ECKHARD MANDELKOW

#	Article	IF	CITATIONS
37	Autophagic degradation of tau in primary neurons and its enhancement by trehalose. Neurobiology of Aging, 2012, 33, 2291-2305.	1.5	241
38	Reversibility of Tau-Related Cognitive Defects in a Regulatable FTD Mouse Model. Journal of Molecular Neuroscience, 2011, 45, 432-437.	1.1	42
39	Novel diffusion barrier for axonal retention of Tau in neurons and its failure in neurodegeneration. EMBO Journal, 2011, 30, 4825-4837.	3.5	171
40	Proteolytic processing of tau. Biochemical Society Transactions, 2010, 38, 955-961.	1.6	105
41	Structural Polymorphism of 441-Residue Tau at Single Residue Resolution. PLoS Biology, 2009, 7, e1000034.	2.6	514
42	Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Human Molecular Genetics, 2009, 18, 4153-4170.	1.4	516
43	Interactions of MAP/microtubule affinity regulating kinases with the adaptor complex APâ€2 of clathrinâ€coated vesicles. Cytoskeleton, 2009, 66, 661-672.	4.4	9
44	Domain Conformation of Tau Protein Studied by Solution Small-Angle X-ray Scattering. Biochemistry, 2008, 47, 10345-10353.	1.2	187
45	Missorting of Tau in Neurons Causes Degeneration of Synapses That Can Be Rescued by the Kinase MARK2/Par-1. Journal of Neuroscience, 2007, 27, 2896-2907.	1.7	261
46	The "Jaws―of the Tau-Microtubule Interaction. Journal of Biological Chemistry, 2007, 282, 12230-12239.	1.6	167
47	MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons. Journal of Cell Biology, 2004, 167, 99-110.	2.3	219
48	Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer's disease. Acta Neuropathologica, 2002, 103, 26-35.	3.9	849
49	RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments. FEBS Letters, 1996, 399, 344-349.	1.3	454
50	Domains of tau Protein and Interactions with Microtubules. Biochemistry, 1994, 33, 9511-9522.	1.2	599
51	Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin-dependent kinases cdk2 and cdk5. FEBS Letters, 1993, 336, 417-424.	1.3	435
52	Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: Distinction between PHF-like immunoreactivity and microtubule binding. Neuron, 1993, 11, 153-163.	3.8	725