Daniel Ruzek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9409976/publications.pdf Version: 2024-02-01

		117453	123241
124	4,593	34	61
papers	citations	h-index	g-index
134	134	134	5192
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Research, 2019, 164, 23-51.	1.9	248
2	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	0.9	184
3	Nucleoside Inhibitors of Zika Virus. Journal of Infectious Diseases, 2016, 214, 707-711.	1.9	142
4	Europe-Wide Meta-Analysis of Borrelia burgdorferi Sensu Lato Prevalence in Questing Ixodes ricinus Ticks. Applied and Environmental Microbiology, 2017, 83, .	1.4	138
5	Tick-borne encephalitis: Pathogenesis and clinical implications. Travel Medicine and Infectious Disease, 2010, 8, 223-232.	1.5	136
6	Japanese encephalitis virus: from genome to infectome. Microbes and Infection, 2011, 13, 312-321.	1.0	135
7	CD8+ T-cells mediate immunopathology in tick-borne encephalitis. Virology, 2009, 384, 1-6.	1.1	126
8	Structure of tick-borne encephalitis virus and its neutralization by a monoclonal antibody. Nature Communications, 2018, 9, 436.	5.8	119
9	Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne flaviviruses. Antiviral Chemistry and Chemotherapy, 2018, 26, 204020661876129.	0.3	113
10	Arbidol (Umifenovir): A Broad-Spectrum Antiviral Drug That Inhibits Medically Important Arthropod-Borne Flaviviruses. Viruses, 2018, 10, 184.	1.5	113
11	Breakdown of the Blood-Brain Barrier during Tick-Borne Encephalitis in Mice Is Not Dependent on CD8+ T-Cells. PLoS ONE, 2011, 6, e20472.	1.1	109
12	Bispecific IgG neutralizes SARS-CoV-2 variants and prevents escape in mice. Nature, 2021, 593, 424-428.	13.7	108
13	Rodents as Sentinels for the Prevalence of Tick-Borne Encephalitis Virus. Vector-Borne and Zoonotic Diseases, 2011, 11, 641-647.	0.6	106
14	Omsk haemorrhagic fever. Lancet, The, 2010, 376, 2104-2113.	6.3	96
15	Infection and injury of human astrocytes by tick-borne encephalitis virus. Journal of General Virology, 2014, 95, 2411-2426.	1.3	91
16	Morphological changes in human neural cells following tick-borne encephalitis virus infection. Journal of General Virology, 2009, 90, 1649-1658.	1.3	87
17	Electron Tomography Analysis of Tick-Borne Encephalitis Virus Infection in Human Neurons. Scientific Reports, 2015, 5, 10745.	1.6	84
18	Nucleoside Inhibitors of Tick-Borne Encephalitis Virus. Antimicrobial Agents and Chemotherapy, 2015, 59, 5483-5493.	1.4	80

#	Article	IF	CITATIONS
19	Detection of <i>Borrelia bissettii</i> in Cardiac Valve Tissue of a Patient with Endocarditis and Aortic Valve Stenosis in the Czech Republic. Journal of Clinical Microbiology, 2008, 46, 3540-3543.	1.8	74
20	Mice with different susceptibility to tick-borne encephalitis virus infection show selective neutralizing antibody response and inflammatory reaction in the central nervous system. Journal of Neuroinflammation, 2013, 10, 77.	3.1	74
21	Antiviral activity of the adenosine analogue BCX4430 against West Nile virus and tick-borne flaviviruses. Antiviral Research, 2017, 142, 63-67.	1.9	73
22	Ixodes scapularis and Ixodes ricinus tick cell lines respond to infection with tick-borne encephalitis virus: transcriptomic and proteomic analysis. Parasites and Vectors, 2015, 8, 599.	1.0	71
23	Detection of mosquito-only flaviviruses in Europe. Journal of General Virology, 2012, 93, 1215-1225.	1.3	70
24	Molecular detection of <i>Borrelia bissettii</i> DNA in serum samples from patients in the Czech Republic with suspected borreliosis. FEMS Microbiology Letters, 2009, 292, 274-281.	0.7	68
25	Structure-activity relationships of nucleoside analogues for inhibition of tick-borne encephalitis virus. Antiviral Research, 2016, 133, 119-129.	1.9	66
26	Mutations in the NS2B and NS3 genes affect mouse neuroinvasiveness of a Western European field strain of tick-borne encephalitis virus. Virology, 2008, 374, 249-255.	1.1	62
27	Adenosine triphosphate analogs can efficiently inhibit the Zika virus RNA-dependent RNA polymerase. Antiviral Research, 2017, 137, 131-133.	1.9	62
28	Tick salivary cystatin sialostatin L2 suppresses <scp>IFN</scp> responses in mouse dendritic cells. Parasite Immunology, 2015, 37, 70-78.	0.7	61
29	Evolution of Tertiary Structure of Viral RNA Dependent Polymerases. PLoS ONE, 2014, 9, e96070.	1.1	57
30	Characterisation of Zika virus infection in primary human astrocytes. BMC Neuroscience, 2018, 19, 5.	0.8	55
31	Tick-borne encephalitis virus infects human brain microvascular endothelial cells without compromising blood-brain barrier integrity. Virology, 2017, 507, 110-122.	1.1	52
32	Analysis of serum levels of cytokines, chemokines, growth factors, and monoamine neurotransmitters in patients with tick-borne encephalitis: Identification of novel inflammatory markers with implications for pathogenesis. Journal of Medical Virology, 2015, 87, 885-892.	2.5	45
33	Growth of tick-borne encephalitis virus (European subtype) in cell lines from vector and non-vector ticks. Virus Research, 2008, 137, 142-146.	1.1	39
34	Clinical Characteristics of Patients with Tick-Borne Encephalitis (TBE): A European Multicentre Study from 2010 to 2017. Microorganisms, 2021, 9, 1420.	1.6	36
35	Molecular phylogeography of tick-borne encephalitis virus in central Europe. Journal of General Virology, 2013, 94, 2129-2139.	1.3	35
36	Changes in cytokine and chemokine profiles in mouse serum and brain, and in human neural cells, upon tick-borne encephalitis virus infection. Journal of Neuroinflammation, 2019, 16, 205.	3.1	34

#	Article	IF	CITATIONS
37	Collective behavior of magnetic microrobots through immuno-sandwich assay: On-the-fly COVID-19 sensing. Applied Materials Today, 2022, 26, 101337.	2.3	34
38	Escape of Tick-Borne Flavivirus from 2â€2- <i>C</i> -Methylated Nucleoside Antivirals Is Mediated by a Single Conservative Mutation in NS5 That Has a Dramatic Effect on Viral Fitness. Journal of Virology, 2017, 91, .	1.5	33
39	Full genome sequences and molecular characterization of tick-borne encephalitis virus strains isolated from human patients. Ticks and Tick-borne Diseases, 2015, 6, 38-46.	1.1	30
40	An Approach for Zika Virus Inhibition Using Homology Structure of the Envelope Protein. Molecular Biotechnology, 2016, 58, 801-806.	1.3	30
41	An E460D Substitution in the NS5 Protein of Tick-Borne Encephalitis Virus Confers Resistance to the Inhibitor Galidesivir (BCX4430) and Also Attenuates the Virus for Mice. Journal of Virology, 2019, 93, .	1.5	30
42	Tick-borne encephalitis in domestic animals. Acta Virologica, 2020, 64, 226-232.	0.3	30
43	Relation of genetic phylogeny and geographical distance of tick-borne encephalitis virus in central Europe. Journal of General Virology, 2011, 92, 1906-1916.	1.3	29
44	Tick-borne encephalitis: What travelers should know when visiting an endemic country. Human Vaccines and Immunotherapeutics, 2016, 12, 2694-2699.	1.4	29
45	Substrate prediction of Ixodes ricinus salivary lipocalins differentially expressed during Borrelia afzelii infection. Scientific Reports, 2016, 6, 32372.	1.6	29
46	No indication of arthropod-vectored viruses in mosquitoes (Diptera: Culicidae) collected on Greenland and Svalbard. Polar Biology, 2018, 41, 1581-1586.	0.5	29
47	Rapid subtyping of tick-borne encephalitis virus isolates using multiplex RT-PCR. Journal of Virological Methods, 2007, 144, 133-137.	1.0	28
48	Detection of Diverse Novel Bat Astrovirus Sequences in the Czech Republic. Vector-Borne and Zoonotic Diseases, 2015, 15, 518-521.	0.6	28
49	Broad-range survey of vector-borne pathogens and tick host identification of Ixodes ricinus from Southern Czech Republic. FEMS Microbiology Ecology, 2017, 93, .	1.3	27
50	Multiple Lineages of Usutu Virus (Flaviviridae, Flavivirus) in Blackbirds (Turdus merula) and Mosquitoes (Culex pipiens, Cx. modestus) in the Czech Republic (2016–2019). Microorganisms, 2019, 7, 568.	1.6	27
51	Tick-Borne Encephalitis Virus Vaccines Contain Non-Structural Protein 1 Antigen and May Elicit NS1-Specific Antibody Responses in Vaccinated Individuals. Vaccines, 2020, 8, 81.	2.1	27
52	Cell lines from the soft tick Ornithodoros moubata. Experimental and Applied Acarology, 2009, 49, 209-219.	0.7	26
53	The structural model of Zika virus RNA-dependent RNA polymerase in complex with RNA for rational design of novel nucleotide inhibitors. Scientific Reports, 2018, 8, 11132.	1.6	26
54	Functional characterization of two defensin isoforms of the hard tick Ixodes ricinus. Parasites and Vectors, 2011, 4, 63.	1.0	25

#	Article	IF	CITATIONS
55	May early intervention with high dose intravenous immunoglobulin pose a potentially successful treatment for severe cases of tick-borne encephalitis?. BMC Infectious Diseases, 2013, 13, 306.	1.3	25
56	A Review of Methods for Detecting Tick-Borne Encephalitis Virus Infection in Tick, Animal, and Human Specimens. Vector-Borne and Zoonotic Diseases, 2016, 16, 4-12.	0.6	25
57	Novel hantavirus identified in European bat species Nyctalus noctula. Infection, Genetics and Evolution, 2017, 48, 127-130.	1.0	25
58	Tick-borne encephalitis virus neutralization by high dose intravenous immunoglobulin. Ticks and Tick-borne Diseases, 2017, 8, 253-258.	1.1	25
59	Broad and potent neutralizing human antibodies to tick-borne flaviviruses protect mice from disease. Journal of Experimental Medicine, 2021, 218, .	4.2	25
60	Hedgehogs, Squirrels, and Blackbirds as Sentinel Hosts for Active Surveillance of Borrelia miyamotoi and Borrelia burgdorferi Complex in Urban and Rural Environments. Microorganisms, 2020, 8, 1908.	1.6	24
61	Serum matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 levels in patients with tick-borne encephalitis. Journal of Infection, 2014, 68, 165-169.	1.7	22
62	Tick-Borne Encephalitis in Sheep, Romania. Emerging Infectious Diseases, 2017, 23, 2065-2067.	2.0	22
63	Development and testing of a new tick-borne encephalitis virus vaccine candidate for veterinary use. Vaccine, 2018, 36, 7257-7261.	1.7	22
64	Non-Nucleotide RNA-Dependent RNA Polymerase Inhibitor That Blocks SARS-CoV-2 Replication. Viruses, 2021, 13, 1585.	1.5	22
65	Antiviral Activity of 7-Substituted 7-Deazapurine Ribonucleosides, Monophosphate Prodrugs, and Triphoshates against Emerging RNA Viruses. ACS Infectious Diseases, 2021, 7, 471-478.	1.8	22
66	Combination therapy of rabies-infected mice with inhibitors of pro-inflammatory host response, antiviral compounds and human rabies immunoglobulin. Vaccine, 2019, 37, 4724-4735.	1.7	20
67	Phylogenetic and virulence analysis of tickâ€borne encephalitis virus field isolates from Switzerland. Journal of Medical Virology, 2011, 83, 853-863.	2.5	19
68	Seroprevalence of Borrelia burgdorferi sensu lato and tick-borne encephalitis virus in zoo animal species in the Czech Republic. Ticks and Tick-borne Diseases, 2014, 5, 523-527.	1.1	19
69	Viral RNA-Dependent RNA Polymerase Inhibitor 7-Deaza-2′- <i>C</i> -Methyladenosine Prevents Death in a Mouse Model of West Nile Virus Infection. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	19
70	Three-dimensional reconstruction of the feeding apparatus of the tick Ixodes ricinus (Acari: Ixodidae): a new insight into the mechanism of blood-feeding. Scientific Reports, 2020, 10, 165.	1.6	18
71	FDA-Approved Drugs Efavirenz, Tipranavir, and Dasabuvir Inhibit Replication of Multiple Flaviviruses in Vero Cells. Microorganisms, 2020, 8, 599.	1.6	17
72	The Role of Peridomestic Animals in the Eco-Epidemiology of Anaplasma phagocytophilum. Microbial Ecology, 2021, 82, 602-612.	1.4	17

#	Article	IF	CITATIONS
73	First documented case of imported tickâ€borne encephalitis in <scp>A</scp> ustralia. Internal Medicine Journal, 2013, 43, 93-96.	0.5	16
74	Model of Risk of Exposure to Lyme Borreliosis and Tick-Borne Encephalitis Virus-Infected Ticks in the Border Area of the Czech Republic (South Bohemia) and Germany (Lower Bavaria and Upper Palatinate). International Journal of Environmental Research and Public Health, 2019, 16, 1173.	1.2	16
75	Compelling Evidence for the Activity of Antiviral Peptides against SARS-CoV-2. Viruses, 2021, 13, 912.	1.5	16
76	Comparative analysis of complete genome sequences of European subtype tick-borne encephalitis virus strains isolated from Ixodes persulcatus ticks, long-tailed ground squirrel (Spermophilus undulatus) Tj ETQqO	0 0 rgBtT /Ov	verl o ¢k 10 Tf 5
77	A novel locus on mouse chromosome 7 that influences survival after infection with tick-borne encephalitis virus. BMC Neuroscience, 2018, 19, 39.	0.8	14
78	Advanced Therapeutics, Vaccinations, and Precision Medicine in the Treatment and Management of Chronic Hepatitis B Viral Infections; Where Are We and Where Are We Going?. Viruses, 2020, 12, 998.	1.5	14
79	Antiviral Activity of Vacuolar ATPase Blocker Diphyllin against SARS-CoV-2. Microorganisms, 2021, 9, 471.	1.6	14
80	Monoclonal antibodies targeting two immunodominant epitopes on the Spike protein neutralize emerging SARS-CoV-2 variants of concern. EBioMedicine, 2022, 76, 103818.	2.7	14
81	The variability of the large genomic segment of Å s hyÅ^a orthobunyavirus and an all-atom exploration of its anti-viral drug resistance. Infection, Genetics and Evolution, 2013, 20, 304-311.	1.0	13
82	Antiviral activities of 2,6-diaminopurine-based acyclic nucleoside phosphonates against herpesviruses: In vitro study results with pseudorabies virus (PrV, SuHV-1). Veterinary Microbiology, 2016, 184, 84-93.	0.8	13
83	Broad-Spectrum Antiviral Activity of 3â€2-Deoxy-3â€2-Fluoroadenosine against Emerging Flaviviruses. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	13
84	Tick-Borne Encephalitis Virus Infection of Cultured Mouse Macrophages. Intervirology, 2009, 52, 283-290.	1.2	12
85	Evaluation of two artificial infection methods of live ticks as tools for studying interactions between tick-borne viruses and their tick vectors. Scientific Reports, 2022, 12, 491.	1.6	12
86	Nucleotide variability of Å a hyÅ^a virus (Bunyaviridae, Orthobunyavirus) small (S) and medium (M) genomic segments in field strains differing in biological properties. Virus Research, 2010, 149, 119-123.	1.1	11
87	Tick-Borne Encephalitis Virus: A General Overview. , 0, , .		11
88	Guanine quadruplexes in the RNA genome of the tick-borne encephalitis virus: their role as a new antiviral target andÂin virus biology. Nucleic Acids Research, 2022, 50, 4574-4600.	6.5	11
89	A deep phylogeny of viral and cellular right-hand polymerases. Infection, Genetics and Evolution, 2015, 36, 275-286.	1.0	10
90	Fatal tick-borne encephalitis in an immunosuppressed 12-year-old patient. Journal of Clinical Virology, 2016, 74, 73-74.	1.6	10

#	Article	IF	CITATIONS
91	Kyasanur Forest disease virus infection activates human vascular endothelial cells and monocyte-derived dendritic cells. Emerging Microbes and Infections, 2018, 7, 1-12.	3.0	10
92	Comprehensive N-glycosylation mapping of envelope glycoprotein from tick-borne encephalitis virus grown in human and tick cells. Scientific Reports, 2020, 10, 13204.	1.6	10
93	High variability in viral load in cerebrospinal fluid from patients with herpes simplex and varicella-zoster infections of the central nervous system. Clinical Microbiology and Infection, 2007, 13, 1217-1219.	2.8	9
94	Molecular characterization of the African orthobunyavirus Ilesha virus. Infection, Genetics and Evolution, 2013, 20, 124-130.	1.0	9
95	Development and characterization of recombinant tick-borne encephalitis virus expressing mCherry reporter protein: A new tool for high-throughput screening of antiviral compounds, and neutralizing antibody assays. Antiviral Research, 2021, 185, 104968.	1.9	9
96	Successful early treatment combining remdesivir with highâ€titer convalescent plasma among COVIDâ€19â€infected hematological patients. Hematological Oncology, 2021, 39, 715-720.	0.8	9
97	An RNA-dependent RNA polymerase inhibitor for tick-borne encephalitis virus. Virology, 2020, 546, 13-19.	1.1	8
98	Hedgehogs and Squirrels as Hosts of Zoonotic Bartonella Species. Pathogens, 2021, 10, 686.	1.2	8
99	Diphyllin Shows a Broad-Spectrum Antiviral Activity against Multiple Medically Important Enveloped RNA and DNA Viruses. Viruses, 2022, 14, 354.	1.5	8
100	Expression of a second open reading frame present in the genome of tick-borne encephalitis virus strain Neudoerfl is not detectable in infected cells. Virus Genes, 2016, 52, 309-316.	0.7	7
101	Flaviviridae viruses use a common molecular mechanism to escape nucleoside analogue inhibitors. Biochemical and Biophysical Research Communications, 2017, 492, 652-658.	1.0	7
102	Antiviral Activity of Uridine Derivatives of 2-Deoxy Sugars against Tick-Borne Encephalitis Virus. Molecules, 2019, 24, 1129.	1.7	7
103	Mannitol treatment is not effective in therapy of rabies virus infection in mice. Vaccine, 2019, 37, 4710-4714.	1.7	7
104	Immunity to TBEV Related Flaviviruses with Reduced Pathogenicity Protects Mice from Disease but Not from TBEV Entry into the CNS. Vaccines, 2021, 9, 196.	2.1	6
105	Experimental and Natural Infections of Tick-Borne Encephalitis Virus in Dogs. Viruses, 2021, 13, 2039.	1.5	6
106	Full-length genome analysis of ÄŒalovo strains of Batai orthobunyavirus (Bunyamwera serogroup): Implications to taxonomy. Infection, Genetics and Evolution, 2014, 27, 96-104.	1.0	5
107	Molecular Epidemiology of Hantaviruses in the Czech Republic. Emerging Infectious Diseases, 2019, 25, 2133-2135.	2.0	5
108	Phylogenetic Analysis of Lednice Orthobunyavirus. Microorganisms, 2019, 7, 447.	1.6	5

#	Article	IF	CITATIONS
109	An all-atom, active site exploration of antiviral drugs that target Flaviviridae polymerases. Journal of General Virology, 2016, 97, 2552-2565.	1.3	5
110	<i>In silico</i> and <i>inÂvitro</i> evaluation of imatinib as an inhibitor for SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 2023, 41, 3052-3061.	2.0	5
111	A comparative analysis on the physicochemical properties of tick-borne encephalitis virus envelope protein residues that affect its antigenic properties. Virus Research, 2017, 238, 124-132.	1.1	4
112	Tick-Borne Encephalitis in an 8.5-Month-Old Boy Suspected of Febrile Seizures. Microorganisms, 2021, 9, 1425.	1.6	4
113	Dynamics of Whole Virus and Non-Structural Protein 1 (NS1) IgG Response in Mice Immunized with Two Commercial Tick-Borne Encephalitis Vaccines. Vaccines, 2022, 10, 1001.	2.1	4
114	Could 5′-N and S ProTide analogues work as prodrugs of antiviral agents?. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126897.	1.0	3
115	Spiroplasma Isolated From Third-Generation Laboratory Colony Ixodes persulcatus Ticks. Frontiers in Veterinary Science, 2021, 8, 659786.	0.9	3
116	Hepatozoon in Eurasian red squirrels Sciurus vulgaris, its taxonomic identity, and phylogenetic placement. Parasitology Research, 2021, 120, 2989-2993.	0.6	3
117	A Helquat-like Compound as a Potent Inhibitor of Flaviviral and Coronaviral Polymerases. Molecules, 2022, 27, 1894.	1.7	3
118	Serum and cerebrospinal fluid phosphorylated neurofilament heavy subunit as a marker of neuroaxonal damage in tick-borne encephalitis. Journal of General Virology, 2022, 103, .	1.3	3
119	Sero-epidemiology of tick-borne encephalitis in small ruminants in the Czech Republic. Ticks and Tick-borne Diseases, 2022, 13, 101996.	1.1	3
120	A dark side to NS1 antibodies?. Journal of Experimental Medicine, 2021, 218, .	4.2	2
121	Chapter 2a: Virology. Tick-borne Encephalitis - the Book, 0, , .	0.0	2
122	Vertebrate viruses in polar ecosystems. , 2020, , 126-148.		0
123	FDA Approved Drugs Efavirenz, Tipranavir, and Dasabuvir Inhibit Replication of Multiple Flaviviruses In Vitro. Proceedings (mdpi), 2020, 50, 6.	0.2	0
124	Chapter 2a: Virology. Tick-borne Encephalitis - the Book, 2022, , .	0.0	0