List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9409705/publications.pdf Version: 2024-02-01

71 ATKO JANERA

#	Article	IF	CITATIONS
1	Synthesis and Biological Evaluation of Acyclic 3-[(2-Hydroxyethoxy)methyl] Analogues of Antiviral Furo- and Pyrrolo[2,3-d]pyrimidine Nucleosides1. Journal of Medicinal Chemistry, 2005, 48, 4690-4696.	2.9	67
2	Synthesis of Novel <i>N</i> -Branched Acyclic Nucleoside Phosphonates As Potent and Selective Inhibitors of Human, Plasmodium falciparum and Plasmodium vivax 6-Oxopurine Phosphoribosyltransferases. Journal of Medicinal Chemistry, 2012, 55, 6209-6223.	2.9	64
3	Acyclic Nucleoside Phosphonates Containing a Second Phosphonate Group Are Potent Inhibitors of 6-Oxopurine Phosphoribosyltransferases and Have Antimalarial Activity. Journal of Medicinal Chemistry, 2013, 56, 2513-2526.	2.9	59
4	A novel and efficient one-pot synthesis of symmetrical diamide (bis-amidate) prodrugs of acyclic nucleoside phosphonates and evaluation of their biological activities. European Journal of Medicinal Chemistry, 2011, 46, 3748-3754.	2.6	58
5	Aza-acyclic Nucleoside Phosphonates Containing a Second Phosphonate Group As Inhibitors of the Human, <i>Plasmodium falciparum</i> and <i>vivax</i> 6-Oxopurine Phosphoribosyltransferases and Their Prodrugs As Antimalarial Agents. Journal of Medicinal Chemistry, 2015, 58, 827-846.	2.9	49
6	Medicinal Chemistry of Fluorinated Cyclic and Acyclic Nucleoside Phosphonates. Medicinal Research Reviews, 2013, 33, 1304-1344.	5.0	47
7	Nucleic Acid Related Compounds. 116. Nonaqueous Diazotization of Aminopurine Nucleosides. Mechanistic Considerations and Efficient Procedures withtert-Butyl Nitrite or Sodium Nitriteâ€,1. Journal of Organic Chemistry, 2002, 67, 6788-6796.	1.7	45
8	Efficient Syntheses of 2-Chloro-2â€~-deoxyadenosine (Cladribine) from 2â€~-Deoxyguanosine1. Journal of Organic Chemistry, 2003, 68, 989-992.	1.7	43
9	Efficient and â€~green' microwave-assisted synthesis of haloalkylphosphonates via the Michaelis–Arbuzov reaction. Green Chemistry, 2011, 13, 882.	4.6	40
10	The optimized microwave-assisted decomposition of formamides and its synthetic utility in the amination reactions of purines. Tetrahedron, 2011, 67, 866-871.	1.0	38
11	First Crystal Structures of <i>Mycobacterium tuberculosis</i> 6-Oxopurine Phosphoribosyltransferase: Complexes with GMP and Pyrophosphate and with Acyclic Nucleoside Phosphonates Whose Prodrugs Have Antituberculosis Activity. Journal of Medicinal Chemistry, 2015, 58, 4822-4838.	2.9	36
12	Microwave-assisted hydrolysis of phosphonate diesters: an efficient protocol for the preparation of phosphonic acids. Green Chemistry, 2012, 14, 2282.	4.6	35
13	Estimation of apparent binding constant of complexes of selected acyclic nucleoside phosphonates with β yclodextrin by affinity capillary electrophoresis. Electrophoresis, 2016, 37, 239-247.	1.3	33
14	SNAr Iodination of 6-Chloropurine Nucleosides:  Aromatic Finkelstein Reactions at Temperatures Below â^'40 °C1. Organic Letters, 2004, 6, 2917-2919.	2.4	30
15	Synthesis of Acyclic Nucleoside and Nucleotide Analogs Derived from 6-Amino-7H-purin-8(9H)-one. Collection of Czechoslovak Chemical Communications, 2000, 65, 1126-1144.	1.0	29
16	Antimalarial activity of prodrugs of N-branched acyclic nucleoside phosphonate inhibitors of 6-oxopurine phosphoribosyltransferases. Bioorganic and Medicinal Chemistry, 2015, 23, 5502-5510.	1.4	29
17	Synthesis and Biological Evaluation of Phosphoester and Phosphorothioate Prodrugs of STING Agonist 3′,3′-c-Di(2′F,2′dAMP). Journal of Medicinal Chemistry, 2021, 64, 7596-7616.	2.9	28
18	Synthesis and antiviral activity of N9-[3-fluoro-2-(phosphonomethoxy)propyl] analogues derived from N6-substituted adenines and 2,6-diaminopurines. Bioorganic and Medicinal Chemistry, 2011, 19, 2114-2124.	1.4	27

#	Article	IF	CITATIONS
19	Photoswitchable Intramolecular Hydrogen Bonds in 5â€Phenylazopyrimidines Revealed By In Situ Irradiation NMR Spectroscopy. Chemistry - A European Journal, 2018, 24, 492-498.	1.7	26
20	Functionalization of Guanosine and 2′â€Đeoxyguanosine at C6: A Modified Appel Process and SNAr Displacement of Imidazole. Nucleosides, Nucleotides and Nucleic Acids, 2004, 23, 137-147.	0.4	24
21	An efficient microwave-assisted synthesis and biological properties of polysubstituted pyrimidinyl- and 1,3,5-triazinylphosphonic acids. Tetrahedron, 2012, 68, 865-871.	1.0	23
22	Compromised telomere maintenance in hypomethylated Arabidopsis thaliana plants. Nucleic Acids Research, 2014, 42, 2919-2931.	6.5	22
23	Synthesis and Evaluation of Novel Acyclic Nucleoside Phosphonates as Inhibitors of <i>Plasmodium falciparum</i> and Human 6â€Oxopurine Phosphoribosyltransferases. ChemMedChem, 2015, 10, 1707-1723.	1.6	21
24	Photoswitching Behavior of 5-Phenylazopyrimidines: In Situ Irradiation NMR and Optical Spectroscopy Combined with Theoretical Methods. Journal of Organic Chemistry, 2018, 83, 5986-5998.	1.7	21
25	Reactive cyclic intermediates in the ProTide prodrugs activation: trapping the elusive pentavalent phosphorane. Organic and Biomolecular Chemistry, 2019, 17, 315-320.	1.5	21
26	5-Substituted 2-amino-4,6-dihydroxypyrimidines and 2-amino-4,6-dichloropyrimidines: synthesis and inhibitory effects on immune-activated nitric oxide production. Medicinal Chemistry Research, 2014, 23, 4482-4490.	1.1	20
27	Synthesis and evaluation of symmetric acyclic nucleoside bisphosphonates as inhibitors of the Plasmodium falciparum, Plasmodium vivax and human 6-oxopurine phosphoribosyltransferases and the antimalarial activity of their prodrugs. Bioorganic and Medicinal Chemistry, 2017, 25, 4008-4030.	1.4	20
28	The effect of novel [3-fluoro-(2-phosphonoethoxy)propyl]purines on the inhibition of Plasmodium falciparum, Plasmodium vivax and human hypoxanthine–guanine–(xanthine) phosphoribosyltransferases. European Journal of Medicinal Chemistry, 2013, 67, 81-89.	2.6	19
29	Amidate Prodrugs of 9-[2-(Phosphonomethoxy)Ethyl]Adenine as Inhibitors of Adenylate Cyclase Toxin from Bordetella pertussis. Antimicrobial Agents and Chemotherapy, 2014, 58, 664-671.	1.4	19
30	Bisamidate Prodrugs of 2â€Substituted 9â€{2â€(Phosphonomethoxy)ethyl]adenine (PMEA, adefovir) as Selective Inhibitors of Adenylate Cyclase Toxin from <i>Bordetella pertussis</i> . ChemMedChem, 2015, 10, 1351-1364.	1.6	18
31	Acyclic Nucleoside Phosphonates Containing 9â€Deazahypoxanthine and a Fiveâ€Membered Heterocycle as Selective Inhibitors of Plasmodial 6â€Oxopurine Phosphoribosyltransferases. ChemMedChem, 2017, 12, 1133-1141.	1.6	18
32	Synthesis and Evaluation of Asymmetric Acyclic Nucleoside Bisphosphonates as Inhibitors of <i>Plasmodium falciparum</i> and Human Hypoxanthine–Guanine–(Xanthine) Phosphoribosyltransferase. Journal of Medicinal Chemistry, 2017, 60, 7539-7554.	2.9	18
33	Polysubstituted 5â€₽henylazopyrimidines: Extremely Fast Nonâ€ionic Photochromic Oscillators. Angewandte Chemie - International Edition, 2020, 59, 15590-15594.	7.2	17
34	Synthesis and biological evaluation of 5-(alkyn-1-yl)-1-(p-toluenesulfonyl)uracil derivatives. Canadian Journal of Chemistry, 2006, 84, 580-586.	0.6	16
35	The efficient synthesis of 2-arylpyrimidine acyclic nucleoside phosphonates using Liebeskind–Srogl cross-coupling reaction. Tetrahedron, 2011, 67, 7379-7385.	1.0	16
36	Interactions with selected drug renal transporters and transporter-mediated cytotoxicity in antiviral agents from the group of acyclic nucleoside phosphonates. Toxicology, 2013, 311, 135-146.	2.0	16

#	Article	IF	CITATIONS
37	Synthesis of Acyclic Nucleoside and Nucleotide Analogs Derived from 6-Amino-7H-purine-8(9H)-thione and 8-(Methylsulfanyl)adenine. Collection of Czechoslovak Chemical Communications, 2000, 65, 1698-1712.	1.0	15
38	Influence of Intramolecular Charge Transfer and Nuclear Quantum Effects on Intramolecular Hydrogen Bonds in Azopyrimidines. Journal of Organic Chemistry, 2017, 82, 10350-10359.	1.7	15
39	Synthesis and biological evaluation of acyclic nucleotide analogues with a furo[2,3- <i>d</i>]pyrimidin-2(3 <i>H</i>)-one base. Canadian Journal of Chemistry, 2010, 88, 628-638.	0.6	14
40	A Switchable Intramolecular Hydrogen Bond in Polysubstituted 5-Nitrosopyrimidines. Journal of Organic Chemistry, 2013, 78, 10121-10133.	1.7	14
41	Enantiopurity analysis of new types of acyclic nucleoside phosphonates by capillary electrophoresis with cyclodextrins as chiral selectors. Journal of Separation Science, 2014, 37, 295-303.	1.3	14
42	Synthesis of 8-Amino- and N-Substituted 8-Aminoadenine Derivatives of Acyclic Nucleoside and Nucleotide Analogs. Collection of Czechoslovak Chemical Communications, 2001, 66, 517-532.	1.0	13
43	An efficient oxa-Michael addition to diethyl vinylphosphonate under mild reaction conditions. RSC Advances, 2012, 2, 1282-1284.	1.7	13
44	9-[2-(R)-(Phosphonomethoxy)propyl]-2,6-diaminopurine (R)-PMPDAP and its prodrugs: Optimized preparation, including identification of by-products formed, and antiviral evaluation in vitro. Bioorganic and Medicinal Chemistry, 2013, 21, 1199-1208.	1.4	13
45	Antiviral activities of 2,6-diaminopurine-based acyclic nucleoside phosphonates against herpesviruses: In vitro study results with pseudorabies virus (PrV, SuHV-1). Veterinary Microbiology, 2016, 184, 84-93.	0.8	13
46	Discovery of Modified Amidate (ProTide) Prodrugs of Tenofovir with Enhanced Antiviral Properties. Journal of Medicinal Chemistry, 2021, 64, 16425-16449.	2.9	13
47	A conversion of aromatic thiocyanates into sulfothioates: new synthetic route to aromatic Bunte salts. RSC Advances, 2013, 3, 2650.	1.7	12
48	Entecavir Interacts with Influx Transporters hOAT1, hCNT2, hCNT3, but Not with hOCT2: The Potential for Renal Transporter-Mediated Cytotoxicity and Drug–Drug Interactions. Frontiers in Pharmacology, 2015, 6, 304.	1.6	12
49	Novel nucleotide analogues bearing (1 H -1,2,3-triazol-4-yl)phosphonic acid moiety as inhibitors of Plasmodium and human 6-oxopurine phosphoribosyltransferases. Tetrahedron, 2017, 73, 692-702.	1.0	12
50	Sulfide, sulfoxide and sulfone bridged acyclic nucleoside phosphonates as inhibitors of the Plasmodium falciparum and human 6-oxopurine phosphoribosyltransferases: Synthesis and evaluation. European Journal of Medicinal Chemistry, 2019, 183, 111667.	2.6	12
51	Intramolecular Cyclization of Some Acyclic Nucleoside Analogs. Collection of Czechoslovak Chemical Communications, 1996, 61, 442-457.	1.0	11
52	A novel type of acyclic nucleoside phosphonates derived from 2-(phosphonomethoxy)propanoic acid. Tetrahedron, 2012, 68, 4003-4012.	1.0	11
53	Novel (2,6-difluorophenyl)(2-(phenylamino)pyrimidin-4-yl)methanones with restricted conformation as potent non-nucleoside reverse transcriptase inhibitors against HIV-1. European Journal of Medicinal Chemistry, 2016, 122, 185-195.	2.6	11
54	Design and Synthesis of Fluorescent Acyclic Nucleoside Phosphonates as Potent Inhibitors of Bacterial Adenylate Cyclases. ChemMedChem, 2016, 11, 2534-2546.	1.6	11

#	Article	IF	CITATIONS
55	Influence of the C-5 substitution in polysubstituted pyrimidines on inhibition of prostaglandin E2 production. European Journal of Medicinal Chemistry, 2018, 156, 295-301.	2.6	11
56	Acyclic nucleoside phosphonates with unnatural nucleobases, favipiravir and allopurinol, designed as potential inhibitors of the human and Plasmodium falciparum 6-oxopurine phosphoribosyltransferases. Tetrahedron, 2018, 74, 5886-5897.	1.0	11
57	Efficient one-pot synthesis of polysubstituted 6-[(1H-1,2,3-triazol-1-yl)methyl]uracils through the "click―protocol. Collection of Czechoslovak Chemical Communications, 2011, 76, 1121-1131.	1.0	10
58	Synthesis and biological evaluation of guanidino analogues of roscovitine. European Journal of Medicinal Chemistry, 2013, 62, 443-452.	2.6	10
59	Development of Smallâ€Molecule Antivirals for Ebola. Medicinal Research Reviews, 2015, 35, 1175-1194.	5.0	10
60	Tunable Push–Pull Interactions in 5-Nitrosopyrimidines. Journal of Organic Chemistry, 2016, 81, 3780-3789.	1.7	10
61	Nucleobase Modified Adefovir (PMEA) Analogues as Potent and Selective Inhibitors of Adenylate Cyclases from <i>Bordetella pertussis</i> and <i>Bacillus anthracis</i> . ChemMedChem, 2018, 13, 1779-1796.	1.6	10
62	The synthesis of the 8-C-substituted 2,6-diamino-9-[2-(phosphonomethoxy)ethyl]purine (PMEDAP) derivatives by diverse cross-coupling reactions. Canadian Journal of Chemistry, 2011, 89, 488-498.	0.6	9
63	Efficient synthesis and biological properties of the 2′-trifluoromethyl analogues of acyclic nucleosides and acyclic nucleoside phosphonates. Collection of Czechoslovak Chemical Communications, 2011, 76, 1187-1198.	1.0	9
64	Synthesis and structure–activity relationship studies of polysubstituted pyrimidines as inhibitors of immune-activated nitric oxide production. Medicinal Chemistry Research, 2015, 24, 2154-2166.	1.1	9
65	Separation of rotamers of 5-nitrosopyrimidines and estimation of binding constants of their complexes with β-cyclodextrin by capillary electrophoresis. Journal of Chromatography A, 2018, 1570, 164-171.	1.8	9
66	Polysubstituted Pyrimidines as mPGESâ€1 Inhibitors: Discovery of Potent Inhibitors of PGE 2 Production with Strong Antiâ€inflammatory Effects in Carrageenanâ€Induced Rat Paw Edema. ChemMedChem, 2020, 15, 1398-1407.	1.6	9
67	Crystal Structures of Acyclic Nucleoside Phosphonates in Complex withEscherichia coliHypoxanthine Phosphoribosyltransferase. ChemistrySelect, 2016, 1, 6267-6276.	0.7	8
68	Synthesis of αâ€Branched Acyclic Nucleoside Phosphonates as Potential Inhibitors of Bacterial Adenylate Cyclases. ChemMedChem, 2018, 13, 199-206.	1.6	7
69	Nucleotide analogues containing a pyrrolidine, piperidine or piperazine ring: Synthesis and evaluation of inhibition of plasmodial and human 6-oxopurine phosphoribosyltransferases and inÂvitro antimalarial activity. European Journal of Medicinal Chemistry, 2021, 219, 113416.	2.6	7
70	Transformation of 8-[(2-Hydroxyalkyl)sulfanyl]adenines to 6-Amino-7H-purin-8(9H)-one Derivatives. Collection of Czechoslovak Chemical Communications, 2001, 66, 1393-1406.	1.0	6
71	Meeting report: 32nd International Conference on Antiviral Research. Antiviral Research, 2019, 169, 104550.	1.9	6
72	An Efficient Alternative Route To 3,6-Disubstituted-Furo[2,3-d]Pyrimidin-2-One Analogues. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 1729-1743.	0.4	5

#	Article	IF	CITATIONS
73	Alternative synthesis of 9-{3-[(diisopropoxyphosphoryl)methoxy]-2-hydroxypropyl}adenine and its free phosphonates substituted at the C-8 position of purine base. Collection of Czechoslovak Chemical Communications, 2010, 75, 371-381.	1.0	5
74	Acyclic nucleoside phosphonates with 2-aminothiazole base as inhibitors of bacterial and mammalian adenylate cyclases. European Journal of Medicinal Chemistry, 2021, 222, 113581.	2.6	5
75	Polysubstituted 4,6-bis(hetero)arylpyrimidines as dual inhibitors of nitric oxide and prostaglandin E 2 production. Nitric Oxide - Biology and Chemistry, 2017, 67, 53-57.	1.2	4
76	Xanthine-based acyclic nucleoside phosphonates with potent antiviral activity against varicella-zoster virus and human cytomegalovirus. Antiviral Chemistry and Chemotherapy, 2018, 26, 204020661881305.	0.3	4
77	Determination of nucleobase-pairing free energies from rotamer equilibria of 2-(methylamino)pyrimidines. Chemical Communications, 2019, 55, 11075-11078.	2.2	4
78	Synthesis and anti-human immunodeficiency virus activity of substituted (<i>o,o</i> -difluorophenyl)-linked-pyrimidines as potent nonâ€nucleoside reverse transcriptase inhibitors. Antiviral Chemistry and Chemotherapy, 2019, 27, 204020661982626.	0.3	4
79	Efficient Synthesis of α-Branched Purine-Based Acyclic Nucleosides: Scopes and Limitations of the Method. Molecules, 2020, 25, 4307.	1.7	4
80	Development of Scalable Synthesis of 5-Butyl-4-(4-methoxyphenyl)-6-phenylpyrimidin-2-amine (WQE-134), a Dual Inhibitor of Nitric Oxide and Prostaglandin E ₂ Production. Organic Process Research and Development, 2020, 24, 1718-1724.	1.3	4
81	Synthesis of Tetrasubstituted Thiophenes via Direct Metalation. Journal of Organic Chemistry, 2020, 85, 788-797.	1.7	3
82	Polysubstituted Pyrimidines as Potent Inhibitors of Prostaglandin E ₂ Production: Increasing Aqueous Solubility. ChemMedChem, 2021, 16, 2802-2806.	1.6	3
83	Polysubstituted 5â€Phenylazopyrimidines: Extremely Fast Nonâ€ionic Photochromic Oscillators. Angewandte Chemie, 2020, 132, 15720-15724.	1.6	3
84	Halogenâ€Ðanceâ€Based Synthesis of Phosphonomethoxyethyl (PME) Substituted 2â€Aminothiazoles as Potent Inhibitors of Bacterial Adenylate Cyclases. ChemMedChem, 2022, 17, .	1.6	3
85	Stereo-Defined Acyclic Nucleoside Phosphonates are Selective and Potent Inhibitors of Parasite 6-Oxopurine Phosphoribosyltransferases. Journal of Medicinal Chemistry, 2022, 65, 4030-4057.	2.9	3
86	Synthesis and anti-trypanosomal evaluation of novel N-branched acyclic nucleoside phosphonates bearing 7-aryl-7-deazapurine nucleobase. European Journal of Medicinal Chemistry, 2022, 239, 114559.	2.6	3
87	Synthesis of 6-(alkoxymethyl)- and 6-(alkylsulfanylmethyl)furo[2,3-d]pyrimidin-2(3H)-one analogues. Canadian Journal of Chemistry, 2006, 84, 561-568.	0.6	2
88	Agave albopilosa: the recently described gem of the genus. Cactus and Succulent Journal, 2013, 85, 108-111.	0.2	2
89	Synthesis and biological properties of prodrugs of (S) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 107 Td ()-3-(108, 374-380.	adenin-9- 2.6	yl)-2-(phosph 2
90	A New Species of Puya (Bromeliaceae) from Coastal Peru. Cactus and Succulent Journal, 2017, 89, 176-184.	0.2	2

#	Article	IF	CITATIONS
91	C1′-Branched acyclic nucleoside phosphonates mimicking adenosine monophosphate: Potent inhibitors of Trypanosoma brucei adenine phosphoribosyltransferase. European Journal of Medicinal Chemistry, 2021, 225, 113798.	2.6	2
92	Intramolecular cyclization of some (S)-9-(3-hydroxy-2-phosphonomethoxypropyl)adenine derivatives. Collection of Czechoslovak Chemical Communications, 1996, 61, 116-117.	1.0	2
93	The unique impact of microwave irradiaton on the chemistry of acyclic nucleoside phosphonates. , 2011, , .		2
94	Phytotoxicity of acyclic nucleoside phosphonates in Brassica pekinensis and Solanum lycopersicum. Plant Cell, Tissue and Organ Culture, 2016, 125, 375-379.	1.2	1
95	Acyclic Nucleoside Phosphonates Bearing (<i>R</i>)―or (<i>S</i>)â€9â€[3â€Hydroxyâ€2â€(phosphonoethoxy)propyl] (HPEP) Moiety as Monomers for the Synthesis of Modified Oligonucleotides. European Journal of Organic Chemistry, 2018, 2018, 5119-5126.	1.2	1
96	Diverse synthetic approaches towards C1′-branched acyclic nucleoside phosphonates. Organic and Biomolecular Chemistry, 2021, 19, 6958-6963.	1.5	1
97	3-Fluoro-2-(phosphonomethoxy)propyl hypoxanthine and guanine derivatives as inhibitors of plasmodial hypoxanthine-guanine-xanthine phosphoribosyltransferases. , 2011, , .		1
98	The efficient synthesis of 2-aryl substituted pyrimidine acyclic nucleoside phosphonates using Liebeskind-Srogl cross-coupling. , 2011, , .		1
99	Tephrocactus abditus a New Geophytic Species from Salta Province, Argentina. Cactus and Succulent Journal, 2019, 91, 251.	0.2	1
100	Synthesis of 8-hydroxy and 8-mercapto derivatives of acyclic adenine nucleoside and nucleotide analogs. Alkylation of 8-substituted adenines. , 1999, , .		1
101	Loxanthocereus hoxeyi (G.J. Charles) Lod $\tilde{\mathbb{Q}}$ the Miniature Cereus from Southern Peru. Cactus and Succulent Journal, 2018, 90, 232.	0.2	1
102	Variability in the response of HBV D-subgenotypes to antiviral therapy: designing pan D-subgenotypic reverse transcriptase inhibitors. Journal of Virology, 2021, , JVI0180021.	1.5	1
103	Photoswitching of 5-phenylazopyrimidines in crystalline powders and thin films. Dyes and Pigments, 2022, 199, 110066.	2.0	1
104	Acyclic nucleoside phosphonates containing a second phosphonate group are potent inhibitors of the 6-oxopurine phosphoribosyltransferases and have antimalarial activity. Malaria Journal, 2014, 13, P91.	0.8	0
105	From the Mysterious Plant to the Most Common Mammillaria: the Story of Mammillaria luethyi. Cactus and Succulent Journal, 2017, 89, 248-255.	0.2	0
106	Mechanisms of Inhibitory Effects of Polysubstituted Pyrimidines on Prostaglandin E2 Production. Proceedings (mdpi), 2019, 22, 24.	0.2	0
107	Rù¼cktitelbild: Polysubstituted 5â€Phenylazopyrimidines: Extremely Fast Nonâ€ionic Photochromic Oscillators (Angew. Chem. 36/2020). Angewandte Chemie, 2020, 132, 15896-15896.	1.6	0
108	Efficient Syntheses of the Clinical Agent Cladribine (2-Chloro-2'-deoxy-adenosine) from		0

108 2'-Deoxyguanosine., 2003, , 192.

#	Article	IF	CITATIONS
109	Efficient one-pot synthesis of polysubstituted 6-[(1H-1,2,3-triazol-1-yl)methyl]uracils through the "click" protocol. , 2011, , .		0
110	Acyclic nucleoside phosphonates as inhibitors of hypoxanthine-guanine-xanthine phosphoribosyltransferase: new anti-malarial chemotherapy leads. , 2011, , .		0
111	Oligonucleotides modified with acyclic nucleoside phosphonate (HPEP) units. , 2014, , .		0
112	Acyclic nucleoside bis-phosphonates as potent inhibitors of 6-oxopurine phosphoribosyltransferases. , 2014, , .		0
113	Synthesis and biological properties of polysubstituted 5-nitrosopyrimidines. , 2014, , .		0
114	Switchable intramolecular hydrogen bond in polysubstituted 5-nitrosopyrimidines. , 2014, , .		0
115	Acyclic nucleoside bisphosphonates as inhibitors of 6-oxopurine phosphoribosyltransferases: potential antimalarial and antibacterial agents. , 2014, , .		0
116	A Visit to the Jardin Exotique de Monaco. Cactus and Succulent Journal, 2019, 91, 211.	0.2	0