
Roberto Scotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9409377/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The self-assembly of sepiolite and silica fillers for advanced rubber materials: The role of collaborative filler network. Applied Clay Science, 2022, 218, 106383.	5.2	17
2	Composite solid-state electrolyte based on hybrid poly(ethylene glycol)-silica fillers enabling long-life lithium metal batteries. Electrochimica Acta, 2022, 411, 140060.	5.2	6
3	Wastewater Treatment Using Alkali-Activated-Based Sorbents Produced from Blast Furnace Slag. Applied Sciences (Switzerland), 2021, 11, 2985.	2.5	7
4	Using the electron spin resonance to detect the functional centers in materials for sensor devices. Ionics, 2021, 27, 1839-1851.	2.4	1
5	Tailoring the Thermal Conductivity of Rubber Nanocomposites by Inorganic Systems: Opportunities and Challenges for Their Application in Tires Formulation. Molecules, 2021, 26, 3555.	3.8	18
6	Design of a Zn Single-Site Curing Activator for a More Sustainable Sulfur Cross-Link Formation in Rubber. Industrial & Engineering Chemistry Research, 2021, 60, 10180-10192.	3.7	17
7	Silica hairy nanoparticles: a promising material for self-assembling processes. Soft Matter, 2021, 17, 9434-9446.	2.7	7
8	SiO2/Ladder-Like Polysilsesquioxanes Nanocomposite Coatings: Playing with the Hybrid Interface for Tuning Thermal Properties and Wettability. Coatings, 2020, 10, 913.	2.6	13
9	Morphology Related Defectiveness in ZnO Luminescence: From Bulk to Nano-Size. Nanomaterials, 2020, 10, 1983.	4.1	14
10	Zinc-Based Curing Activators: New Trends for Reducing Zinc Content in Rubber Vulcanization Process. Catalysts, 2019, 9, 664.	3.5	83
11	Insight into the Influence of ZnO Defectivity on the Catalytic Generation of Environmentally Persistent Free Radicals in ZnO/SiO ₂ Systems. Journal of Physical Chemistry C, 2019, 123, 21651-21661.	3.1	25
12	A Green Approach for Preparing High-Loaded Sepiolite/Polymer Biocomposites. Nanomaterials, 2019, 9, 46.	4.1	18
13	Hybrid Interface in Sepiolite Rubber Nanocomposites: Role of Self-Assembled Nanostructure in Controlling Dissipative Phenomena. Nanomaterials, 2019, 9, 486.	4.1	14
14	On the key role of SiO2@POSS hybrid filler in tailoring networking and interfaces in rubber nanocomposites. Polymer Testing, 2018, 65, 429-439.	4.8	18
15	Size-controlled self-assembly of anisotropic sepiolite fibers in rubber nanocomposites. Applied Clay Science, 2018, 152, 51-64.	5.2	35
16	Unveiling the hybrid interface in polymer nanocomposites enclosing silsesquioxanes with tunable molecular structure: Spectroscopic, thermal and mechanical properties. Journal of Colloid and Interface Science, 2018, 512, 609-617.	9.4	20
17	Step-by-Step Growth of HKUST-1 on Functionalized TiO2 Surface: An Efficient Material for CO2 Capture and Solar Photoreduction. Catalysts, 2018, 8, 353.	3.5	52
18	Tailoring the Dielectric and Mechanical Properties of Polybutadiene Nanocomposites by Using Designed Ladder-like Polysilsesquioxanes. ACS Applied Nano Materials, 2018, 1, 3817-3828.	5.0	15

ROBERTO SCOTTI

#	Article	IF	CITATIONS
19	Hybrid SiO ₂ @POSS nanofiller: a promising reinforcing system for rubber nanocomposites. Materials Chemistry Frontiers, 2017, 1, 1441-1452.	5.9	26
20	New insights into the sensing mechanism of shape controlled ZnO particles. RSC Advances, 2016, 6, 52987-52997.	3.6	13
21	Shape controlled spherical (0D) and rod-like (1D) silica nanoparticles in silica/styrene butadiene rubber nanocomposites: Role of the particle morphology on the filler reinforcing effect. Polymer, 2014, 55, 1497-1506.	3.8	62
22	Surface interaction of WO3 nanocrystals with NH3. Role of the exposed crystal surfaces and porous structure in enhancing the electrical response. RSC Advances, 2014, 4, 11012.	3.6	29
23	High dielectric constant rutile–polystyrene composite with enhanced percolative threshold. Journal of Materials Chemistry C, 2013, 1, 484-492.	5.5	46
24	Rubber–silica nanocomposites obtained by in situ sol–gel method: particle shape influence on the filler–filler and filler–rubber interactions. Soft Matter, 2012, 8, 2131.	2.7	57
25	Sol–gel derived mesoporous Pt and Cr-doped WO3 thin films: the role played by mesoporosity and metal doping in enhancing the gas sensing properties. Journal of Sol-Gel Science and Technology, 2011, 60, 378-387.	2.4	11
26	TiO2 nanocrystals grafted on macroporous silica: A novel hybrid organic–inorganic sol–gel approach for the synthesis of highly photoactive composite material. Applied Catalysis B: Environmental, 2011, 104, 282-290.	20.2	30
27	One-Step Preparation of SnO ₂ and Pt-Doped SnO ₂ As Inverse Opal Thin Films for Gas Sensing. Chemistry of Materials, 2010, 22, 4083-4089.	6.7	96
28	Nonlinear Modelling of Kinetic Data Obtained from Photocatalytic Mineralisation of 2,4-Dichlorophenol on a Titanium Dioxide Membrane. International Journal of Photoenergy, 2009, 2009, 1-10.	2.5	4