Roberto Scotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9409377/publications.pdf

Version: 2024-02-01

28	756	15	27
papers	citations	h-index	g-index
30	30	30	990
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	One-Step Preparation of SnO ₂ and Pt-Doped SnO ₂ As Inverse Opal Thin Films for Gas Sensing. Chemistry of Materials, 2010, 22, 4083-4089.	6.7	96
2	Zinc-Based Curing Activators: New Trends for Reducing Zinc Content in Rubber Vulcanization Process. Catalysts, 2019, 9, 664.	3.5	83
3	Shape controlled spherical (0D) and rod-like (1D) silica nanoparticles in silica/styrene butadiene rubber nanocomposites: Role of the particle morphology on the filler reinforcing effect. Polymer, 2014, 55, 1497-1506.	3.8	62
4	Rubber–silica nanocomposites obtained by in situ sol–gel method: particle shape influence on the filler–filler and filler–rubber interactions. Soft Matter, 2012, 8, 2131.	2.7	57
5	Step-by-Step Growth of HKUST-1 on Functionalized TiO2 Surface: An Efficient Material for CO2 Capture and Solar Photoreduction. Catalysts, 2018, 8, 353.	3.5	52
6	High dielectric constant rutile–polystyrene composite with enhanced percolative threshold. Journal of Materials Chemistry C, 2013, 1, 484-492.	5.5	46
7	Size-controlled self-assembly of anisotropic sepiolite fibers in rubber nanocomposites. Applied Clay Science, 2018, 152, 51-64.	5.2	35
8	TiO2 nanocrystals grafted on macroporous silica: A novel hybrid organic–inorganic sol–gel approach for the synthesis of highly photoactive composite material. Applied Catalysis B: Environmental, 2011, 104, 282-290.	20.2	30
9	Surface interaction of WO3 nanocrystals with NH3. Role of the exposed crystal surfaces and porous structure in enhancing the electrical response. RSC Advances, 2014, 4, 11012.	3.6	29
10	Hybrid SiO ₂ @POSS nanofiller: a promising reinforcing system for rubber nanocomposites. Materials Chemistry Frontiers, 2017, 1, 1441-1452.	5.9	26
11	Insight into the Influence of ZnO Defectivity on the Catalytic Generation of Environmentally Persistent Free Radicals in ZnO/SiO ₂ Systems. Journal of Physical Chemistry C, 2019, 123, 21651-21661.	3.1	25
12	Unveiling the hybrid interface in polymer nanocomposites enclosing silsesquioxanes with tunable molecular structure: Spectroscopic, thermal and mechanical properties. Journal of Colloid and Interface Science, 2018, 512, 609-617.	9.4	20
13	On the key role of SiO2@POSS hybrid filler in tailoring networking and interfaces in rubber nanocomposites. Polymer Testing, 2018, 65, 429-439.	4.8	18
14	A Green Approach for Preparing High-Loaded Sepiolite/Polymer Biocomposites. Nanomaterials, 2019, 9, 46.	4.1	18
15	Tailoring the Thermal Conductivity of Rubber Nanocomposites by Inorganic Systems: Opportunities and Challenges for Their Application in Tires Formulation. Molecules, 2021, 26, 3555.	3.8	18
16	Design of a Zn Single-Site Curing Activator for a More Sustainable Sulfur Cross-Link Formation in Rubber. Industrial & Engineering Chemistry Research, 2021, 60, 10180-10192.	3.7	17
17	The self-assembly of sepiolite and silica fillers for advanced rubber materials: The role of collaborative filler network. Applied Clay Science, 2022, 218, 106383.	5.2	17
18	Tailoring the Dielectric and Mechanical Properties of Polybutadiene Nanocomposites by Using Designed Ladder-like Polysilsesquioxanes. ACS Applied Nano Materials, 2018, 1, 3817-3828.	5.0	15

#	Article	lF	CITATION
19	Hybrid Interface in Sepiolite Rubber Nanocomposites: Role of Self-Assembled Nanostructure in Controlling Dissipative Phenomena. Nanomaterials, 2019, 9, 486.	4.1	14
20	Morphology Related Defectiveness in ZnO Luminescence: From Bulk to Nano-Size. Nanomaterials, 2020, 10, 1983.	4.1	14
21	New insights into the sensing mechanism of shape controlled ZnO particles. RSC Advances, 2016, 6, 52987-52997.	3.6	13
22	SiO2/Ladder-Like Polysilsesquioxanes Nanocomposite Coatings: Playing with the Hybrid Interface for Tuning Thermal Properties and Wettability. Coatings, 2020, 10, 913.	2.6	13
23	Sol–gel derived mesoporous Pt and Cr-doped WO3 thin films: the role played by mesoporosity and metal doping in enhancing the gas sensing properties. Journal of Sol-Gel Science and Technology, 2011, 60, 378-387.	2.4	11
24	Wastewater Treatment Using Alkali-Activated-Based Sorbents Produced from Blast Furnace Slag. Applied Sciences (Switzerland), 2021, 11, 2985.	2.5	7
25	Silica hairy nanoparticles: a promising material for self-assembling processes. Soft Matter, 2021, 17, 9434-9446.	2.7	7
26	Composite solid-state electrolyte based on hybrid poly(ethylene glycol)-silica fillers enabling long-life lithium metal batteries. Electrochimica Acta, 2022, 411, 140060.	5.2	6
27	Nonlinear Modelling of Kinetic Data Obtained from Photocatalytic Mineralisation of 2,4-Dichlorophenol on a Titanium Dioxide Membrane. International Journal of Photoenergy, 2009, 2009, 1-10.	2.5	4
28	Using the electron spin resonance to detect the functional centers in materials for sensor devices. lonics, 2021, 27, 1839-1851.	2.4	1