
Berend Smit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9409290/publications.pdf Version: 2024-02-01

REDEND SMIT

#	Article	IF	CITATIONS
1	Carbon Dioxide Capture: Prospects for New Materials. Angewandte Chemie - International Edition, 2010, 49, 6058-6082.	7.2	3,452
2	Carbon capture and storage (CCS): the way forward. Energy and Environmental Science, 2018, 11, 1062-1176.	15.6	2,378
3	Understanding Molecular Simulation. Computers in Physics, 1997, 11, 351-354.	0.6	1,063
4	Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature, 2015, 519, 303-308.	13.7	1,026
5	Molecular Simulations of Zeolites: Adsorption, Diffusion, and Shape Selectivity. Chemical Reviews, 2008, 108, 4125-4184.	23.0	655
6	In silico screening of carbon-capture materials. Nature Materials, 2012, 11, 633-641.	13.3	497
7	Towards a molecular understanding of shape selectivity. Nature, 2008, 451, 671-678.	13.7	479
8	Selective Binding of O ₂ over N ₂ in a Redox–Active Metal–Organic Framework with Open Iron(II) Coordination Sites. Journal of the American Chemical Society, 2011, 133, 14814-14822.	6.6	470
9	Computer simulations of vapor–liquid phase equilibria ofnâ€alkanes. Journal of Chemical Physics, 1995, 102, 2126-2140.	1.2	467
10	Metalâ^'Organic Frameworks as Adsorbents for Hydrogen Purification and Precombustion Carbon Dioxide Capture. Journal of the American Chemical Society, 2011, 133, 5664-5667.	6.6	465
11	Simulating the critical behaviour of complex fluids. Nature, 1993, 365, 330-332.	13.7	451
12	Molecular Dynamics Simulations. , 2002, , 63-107.		441
13	Data-driven design of metal–organic frameworks for wet flue gas CO2 capture. Nature, 2019, 576, 253-256.	13.7	438
14	Monte Carlo Simulations. , 2002, , 23-61.		414
15	Mapping of Functional Groups in Metal-Organic Frameworks. Science, 2013, 341, 882-885.	6.0	411
16	Novel scheme to study structural and thermal properties of continuously deformable molecules. Journal of Physics Condensed Matter, 1992, 4, 3053-3076.	0.7	384
17	Effect of cholesterol on the structure of a phospholipid bilayer. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3654-3658.	3.3	376
18	Why Clays Swell. Journal of Physical Chemistry B, 2002, 106, 12664-12667.	1.2	350

#	Article	IF	CITATIONS
19	Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M ₂ (dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn). Chemical Science, 2014, 5, 4569-4581.	3.7	342
20	Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal–organic frameworks. Nature Communications, 2014, 5, 5723.	5.8	332
21	Metal–organic framework with optimally selective xenon adsorption and separation. Nature Communications, 2016, 7, ncomms11831.	5.8	325
22	United Atom Force Field for Alkanes in Nanoporous Materials. Journal of Physical Chemistry B, 2004, 108, 12301-12313.	1.2	314
23	The materials genome in action: identifying the performance limits for methane storage. Energy and Environmental Science, 2015, 8, 1190-1199.	15.6	314
24	Computer simulations in the Gibbs ensemble. Molecular Physics, 1989, 68, 931-950.	0.8	311
25	Ab initio carbon capture in open-site metal–organic frameworks. Nature Chemistry, 2012, 4, 810-816.	6.6	310
26	Big-Data Science in Porous Materials: Materials Genomics and Machine Learning. Chemical Reviews, 2020, 120, 8066-8129.	23.0	284
27	Understanding the diversity of the metal-organic framework ecosystem. Nature Communications, 2020, 11, 4068.	5.8	282
28	Comparative Molecular Simulation Study of CO ₂ /N ₂ and CH ₄ /N ₂ Separation in Zeolites and Metalâ^'Organic Frameworks. Langmuir, 2009, 25, 5918-5926.	1.6	276
29	What makes a polar liquid a liquid?. Physical Review Letters, 1993, 71, 3991-3994.	2.9	275
30	Molecular Simulation Studies of Separation of CO ₂ /N ₂ , CO ₂ /CH ₄ , and CH ₄ /N ₂ by ZIFs. Journal of Physical Chemistry C, 2010, 114, 8515-8522.	1.5	266
31	Mesoscopic models of biological membranes. Physics Reports, 2006, 437, 1-54.	10.3	263
32	Understanding the Role of Sodium during Adsorption:Â A Force Field for Alkanes in Sodium-Exchanged Faujasites. Journal of the American Chemical Society, 2004, 126, 11377-11386.	6.6	255
33	Small-Molecule Adsorption in Open-Site Metal–Organic Frameworks: A Systematic Density Functional Theory Study for Rational Design. Chemistry of Materials, 2015, 27, 668-678.	3.2	248
34	Lithiumâ€Doped 3D Covalent Organic Frameworks: Highâ€Capacity Hydrogen Storage Materials. Angewandte Chemie - International Edition, 2009, 48, 4730-4733.	7.2	244
35	Commensurate â€~freezing' of alkanes in the channels of a zeolite. Nature, 1995, 374, 42-44.	13.7	239
36	Simulation Studies of Protein-Induced Bilayer Deformations, and Lipid-Induced Protein Tilting, on a Mesoscopic Model for Lipid Bilayers with Embedded Proteins. Biophysical Journal, 2005, 88, 1778-1798.	0.2	234

#	Article	IF	CITATIONS
37	Computer Simulations of the Energetics and Siting of n-Alkanes in Zeolites. The Journal of Physical Chemistry, 1994, 98, 8442-8452.	2.9	223
38	What Are the Best Materials To Separate a Xenon/Krypton Mixture?. Chemistry of Materials, 2015, 27, 4459-4475.	3.2	211
39	Reversible CO Binding Enables Tunable CO/H ₂ and CO/N ₂ Separations in Metal–Organic Frameworks with Exposed Divalent Metal Cations. Journal of the American Chemical Society, 2014, 136, 10752-10761.	6.6	210
40	The Mechanism of Carbon Dioxide Adsorption in an Alkylamine-Functionalized Metal–Organic Framework. Journal of the American Chemical Society, 2013, 135, 7402-7405.	6.6	208
41	Doping of Alkali, Alkaline-Earth, and Transition Metals in Covalent-Organic Frameworks for Enhancing CO ₂ Capture by First-Principles Calculations and Molecular Simulations. ACS Nano, 2010, 4, 4225-4237.	7.3	206
42	Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture. Journal of the American Chemical Society, 2015, 137, 13301-13307.	6.6	202
43	On the Flexibility of Metal–Organic Frameworks. Journal of the American Chemical Society, 2014, 136, 2228-2231.	6.6	198
44	Entropy effects during sorption of alkanes in zeolites. Chemical Society Reviews, 2002, 31, 185-194.	18.7	193
45	Direct simulation of phase equilibria of chain molecules. Journal of Physics Condensed Matter, 1992, 4, L255-L259.	0.7	190
46	Addressing Challenges of Identifying Geometrically Diverse Sets of Crystalline Porous Materials. Journal of Chemical Information and Modeling, 2012, 52, 308-318.	2.5	189
47	Materials Cloud, a platform for open computational science. Scientific Data, 2020, 7, 299.	2.4	189
48	Evaluating different classes of porous materials for carbon capture. Energy and Environmental Science, 2014, 7, 4132-4146.	15.6	186
49	pyIAST: Ideal adsorbed solution theory (IAST) Python package. Computer Physics Communications, 2016, 200, 364-380.	3.0	186
50	Phase Behavior of Model Lipid Bilayersâ€. Journal of Physical Chemistry B, 2005, 109, 6553-6563.	1.2	185
51	The Role of Machine Learning in the Understanding and Design of Materials. Journal of the American Chemical Society, 2020, 142, 20273-20287.	6.6	179
52	Calculation of the chemical potential in the Gibbs ensemble. Molecular Physics, 1989, 68, 951-958.	0.8	178
53	Force-Field Prediction of Materials Properties in Metal-Organic Frameworks. Journal of Physical Chemistry Letters, 2017, 8, 357-363.	2.1	172
54	Investigation of Surfactant Efficiency Using Dissipative Particle Dynamics. Langmuir, 2003, 19, 8195-8205.	1.6	170

#	Article	IF	CITATIONS
55	Materials Genome in Action: Identifying the Performance Limits of Physical Hydrogen Storage. Chemistry of Materials, 2017, 29, 2844-2854.	3.2	169
56	Molecular Simulations of Swelling Clay Minerals. Journal of Physical Chemistry B, 2004, 108, 7586-7596.	1.2	168
57	Grand canonical Monte Carlo simulations of chain molecules: adsorption isotherms of alkanes in zeolites. Molecular Physics, 1995, 85, 153-172.	0.8	167
58	Computer simulations of surfactant self-assembly. Langmuir, 1993, 9, 9-11.	1.6	164
59	Adsorption of Linear and Branched Alkanes in the Zeolite Silicalite-1. Journal of the American Chemical Society, 1998, 120, 5599-5600.	6.6	163
60	A hybrid absorption–adsorption method to efficiently capture carbon. Nature Communications, 2014, 5, 5147.	5.8	163
61	Understanding CO ₂ Dynamics in Metal–Organic Frameworks with Open Metal Sites. Angewandte Chemie - International Edition, 2013, 52, 4410-4413.	7.2	160
62	Design of a Metal–Organic Framework with Enhanced Back Bonding for Separation of N ₂ and CH ₄ . Journal of the American Chemical Society, 2014, 136, 698-704.	6.6	157
63	Introduction: Carbon Capture and Separation. Chemical Reviews, 2017, 117, 9521-9523.	23.0	157
64	Accurate Characterization of the Pore Volume in Microporous Crystalline Materials. Langmuir, 2017, 33, 14529-14538.	1.6	155
65	Hysteresis in Clay Swelling Induced by Hydrogen Bonding:  Accurate Prediction of Swelling States. Langmuir, 2006, 22, 1223-1234.	1.6	154
66	Capturing chemical intuition in synthesis of metal-organic frameworks. Nature Communications, 2019, 10, 539.	5.8	153
67	<i>In silico</i> Design of Porous Polymer Networks: High-Throughput Screening for Methane Storage Materials. Journal of the American Chemical Society, 2014, 136, 5006-5022.	6.6	146
68	Force Field Parametrization through Fitting on Inflection Points in Isotherms. Physical Review Letters, 2004, 93, 088302.	2.9	144
69	Molecular Simulations of Lipid-Mediated Protein-Protein Interactions. Biophysical Journal, 2008, 95, 1851-1865.	0.2	143
70	Molecular simulation of loading-dependent diffusion in nanoporous materials using extended dynamically corrected transition state theory. Journal of Chemical Physics, 2005, 122, 224712.	1.2	142
71	Understanding Trends in CO ₂ Adsorption in Metal–Organic Frameworks with Open-Metal Sites. Journal of Physical Chemistry Letters, 2014, 5, 861-865.	2.1	139
72	Phase Behavior and Induced Interdigitation in Bilayers Studied with Dissipative Particle Dynamics. Journal of Physical Chemistry B, 2003, 107, 11491-11501.	1.2	138

#	Article	IF	CITATIONS
73	Metal Substitution as the Method of Modifying Electronic Structure of Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 6271-6278.	6.6	137
74	Simulating the Adsorption Isotherms of Methane, Ethane, and Propane in the Zeolite Silicalite. The Journal of Physical Chemistry, 1995, 99, 5597-5603.	2.9	133
75	Molecular Simulation of the Vapor-Liquid Coexistence Curve of Methanol. The Journal of Physical Chemistry, 1995, 99, 1831-1833.	2.9	131
76	Predicting Large CO ₂ Adsorption in Aluminosilicate Zeolites for Postcombustion Carbon Dioxide Capture. Journal of the American Chemical Society, 2012, 134, 18940-18943.	6.6	129
77	Pyrene-based metal organic frameworks: from synthesis to applications. Chemical Society Reviews, 2021, 50, 3143-3177.	18.7	126
78	Molecular simulations in zeolitic process design. Chemical Engineering Science, 2003, 58, 557-568.	1.9	123
79	Computational development of the nanoporous materials genome. Nature Reviews Materials, 2017, 2, .	23.3	123
80	Energetics of n-Alkanes in Zeolites:  A Configurational-Bias Monte Carlo Investigation into Pore Size Dependence. Journal of the American Chemical Society, 1996, 118, 6753-6759.	6.6	122
81	Force-Field Development from Electronic Structure Calculations with Periodic Boundary Conditions: Applications to Gaseous Adsorption and Transport in Metal–Organic Frameworks. Journal of Chemical Theory and Computation, 2014, 10, 1477-1488.	2.3	121
82	Enhanced Adsorption Selectivity of Hydrogen/Methane Mixtures in Metalâ^'Organic Frameworks with Interpenetration: A Molecular Simulation Study. Journal of Physical Chemistry C, 2008, 112, 9854-9860.	1.5	120
83	Porous Metal–Organic Framework@Polymer Beads for Iodine Capture and Recovery Using a Gasâ€5parged Column. Advanced Functional Materials, 2018, 28, 1801596.	7.8	120
84	Electrostatic analogy for surfactant assemblies. The Journal of Physical Chemistry, 1992, 96, 4077-4083.	2.9	114
85	Understanding the Loading Dependence of Self-Diffusion in Carbon Nanotubes. Physical Review Letters, 2005, 95, 044501.	2.9	114
86	Computational screening of porous metalâ€organic frameworks and zeolites for the removal of SO ₂ and NO _x from flue gases. AICHE Journal, 2014, 60, 2314-2323.	1.8	112
87	New materials for methane capture from dilute and medium-concentration sources. Nature Communications, 2013, 4, 1694.	5.8	111
88	Concurrent Photocatalytic Hydrogen Generation and Dye Degradation Using MILâ€125â€NH ₂ under Visible Light Irradiation. Advanced Functional Materials, 2018, 28, 1806368.	7.8	110
89	Phase behavior of monomeric mixtures and polymer solutions with soft interaction potentials. Journal of Chemical Physics, 2001, 114, 7644-7654.	1.2	109
90	Investigation of entropy effects during sorption of mixtures of alkanes in MFI zeolite. Chemical Engineering Journal, 2002, 88, 81-94.	6.6	109

#	Article	IF	CITATIONS
91	Molecular Simulation Study of the Competitive Adsorption of H ₂ O and CO ₂ in Zeolite 13X. Langmuir, 2013, 29, 15936-15942.	1.6	109
92	Molecular Simulation of Loading Dependent Slow Diffusion in Confined Systems. Physical Review Letters, 2004, 93, 248301.	2.9	108
93	Parallel Monte Carlo simulations. Physical Review E, 1995, 51, 1560-1568.	0.8	106
94	Are pressure fluctuation-based equilibrium methods really worse than nonequilibrium methods for calculating viscosities?. Journal of Chemical Physics, 2009, 131, 246101.	1.2	105
95	Large-Scale Screening of Zeolite Structures for CO ₂ Membrane Separations. Journal of the American Chemical Society, 2013, 135, 7545-7552.	6.6	105
96	Separation of Alkane Isomers by Exploiting Entropy Effects during Adsorption on Silicalite-1:  A Configurational-Bias Monte Carlo Simulation Study. Langmuir, 2001, 17, 1558-1570.	1.6	104
97	Understanding Diffusion in Nanoporous Materials. Physical Review Letters, 2006, 96, 044501.	2.9	104
98	Adsorption isotherms of water in Li–, Na–, and K–montmorillonite by molecular simulation. Journal of Chemical Physics, 2001, 115, 3322-3329.	1.2	102
99	In Silico Design of 2D and 3D Covalent Organic Frameworks for Methane Storage Applications. Chemistry of Materials, 2018, 30, 5069-5086.	3.2	101
100	The Influence of Intrinsic Framework Flexibility on Adsorption in Nanoporous Materials. Journal of the American Chemical Society, 2017, 139, 5547-5557.	6.6	100
101	Influence of isotherm inflection on diffusion in silicalite. Chemical Engineering Science, 1999, 54, 1751-1757.	1.9	99
102	Molecular Simulation of the DMPC-Cholesterol Phase Diagram. Journal of Physical Chemistry B, 2010, 114, 10451-10461.	1.2	99
103	Quantifying similarity of pore-geometry in nanoporous materials. Nature Communications, 2017, 8, 15396.	5.8	98
104	Simulating the Effect of Nonframework Cations on the Adsorption of Alkanes in MFI-type Zeolites. Journal of Physical Chemistry B, 2003, 107, 12088-12096.	1.2	95
105	Ligand-Assisted Enhancement of CO ₂ Capture in Metal–Organic Frameworks. Journal of the American Chemical Society, 2012, 134, 6714-6719.	6.6	95
106	Force Field Development from Periodic Density Functional Theory Calculations for Gas Separation Applications Using Metal–Organic Frameworks. Journal of Physical Chemistry C, 2016, 120, 12590-12604.	1.5	95
107	Molecular-dynamics simulations of amphiphilic molecules at a liquid-liquid interface. Physical Review A, 1988, 37, 3431-3433.	1.0	94
108	Photocatalytic hydrogen generation from a visible-light responsive metal–organic framework system: the impact of nickel phosphide nanoparticles. Journal of Materials Chemistry A, 2018, 6, 2476-2481.	5.2	94

#	Article	IF	CITATIONS
109	Adsorption and separation of linear and branched alkanes on carbon nanotube bundles from configurational-bias Monte Carlo simulation. Physical Review B, 2005, 72, .	1.1	93
110	CO2 Capture by Metal–Organic Frameworks with van der Waals Density Functionals. Journal of Physical Chemistry A, 2012, 116, 4957-4964.	1.1	92
111	Molecular simulation of adsorption of short linear alkanes and their mixtures in silicalite. AICHE Journal, 1998, 44, 1756-1764.	1.8	90
112	Large-Scale Computational Screening of Zeolites for Ethane/Ethene Separation. Langmuir, 2012, 28, 11914-11919.	1.6	90
113	Incommensurate Diffusion in Confined Systems. Physical Review Letters, 2003, 90, 245901.	2.9	89
114	Building a Consistent and Reproducible Database for Adsorption Evaluation in Covalent–Organic Frameworks. ACS Central Science, 2019, 5, 1663-1675.	5.3	89
115	Shape Selectivity in Hydrocarbon Conversion. Angewandte Chemie - International Edition, 2001, 40, 736-739.	7.2	88
116	Simulating Induced Interdigitation in Membranes. Biophysical Journal, 2004, 87, 1596-1605.	0.2	88
117	Generating carbon schwarzites via zeolite-templating. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8116-E8124.	3.3	88
118	Rational Design of a Low-Cost, High-Performance Metal–Organic Framework for Hydrogen Storage and Carbon Capture. Journal of Physical Chemistry C, 2017, 121, 1171-1181.	1.5	84
119	Computer Simulation of Incommensurate Diffusion in Zeolites:Â Understanding Window Effects. Journal of Physical Chemistry B, 2003, 107, 12138-12152.	1.2	83
120	Loading Dependence of the Diffusion Coefficient of Methane in Nanoporous Materials. Journal of Physical Chemistry B, 2006, 110, 22754-22772.	1.2	80
121	Bias free multiobjective active learning for materials design and discovery. Nature Communications, 2021, 12, 2312.	5.8	78
122	Simulation of Alkane Adsorption in the Aluminophosphate Molecular Sieve AlPO4â^'5. Journal of Physical Chemistry B, 1998, 102, 7183-7189.	1.2	77
123	Molecular simulations of mesoscopic bilayer phases. Physical Review E, 2003, 67, 060901.	0.8	76
124	Improved United-Atom Force Field for 1-Alkyl-3-methylimidazolium Chloride. Journal of Physical Chemistry B, 2010, 114, 4572-4582.	1.2	76
125	Optimizing nanoporous materials for gas storage. Physical Chemistry Chemical Physics, 2014, 16, 5499.	1.3	76
126	Molecular Simulation of the Effect of Cholesterol on Lipid-Mediated Protein-Protein Interactions. Biophysical Journal, 2010, 99, 3629-3638.	0.2	75

#	Article	IF	CITATIONS
127	The Influence of Non-framework Sodium Cations on the Adsorption of Alkanes in MFI- and MOR-Type Zeolites. Journal of Physical Chemistry B, 2002, 106, 10659-10667.	1.2	74
128	Distinguishing Metal–Organic Frameworks. Crystal Growth and Design, 2018, 18, 1738-1747.	1.4	74
129	Theoretical Simulation of n-Alkane Cracking on Zeolites. Journal of Physical Chemistry C, 2010, 114, 10229-10239.	1.5	73
130	Understanding the Phase Behavior of Coarse-Grained Model Lipid Bilayers through Computational Calorimetry. Journal of Physical Chemistry B, 2012, 116, 1551-1569.	1.2	73
131	Critical Factors Driving the High Volumetric Uptake of Methane in Cu ₃ (btc) ₂ . Journal of the American Chemical Society, 2015, 137, 10816-10825.	6.6	73
132	First-principles Hubbard <i>U</i> approach for small molecule binding in metal-organic frameworks. Journal of Chemical Physics, 2016, 144, 174104.	1.2	73
133	Enhanced Visible-Light-Driven Hydrogen Production through MOF/MOF Heterojunctions. ACS Applied Materials & amp; Interfaces, 2021, 13, 14239-14247.	4.0	73
134	Effects of Zeolite Structural Confinement on Adsorption Thermodynamics and Reaction Kinetics for Monomolecular Cracking and Dehydrogenation of <i>n</i> Butane. Journal of the American Chemical Society, 2016, 138, 4739-4756.	6.6	72
135	Capillary Phase Transitions ofn-Alkanes in a Carbon Nanotube. Nano Letters, 2004, 4, 241-244.	4.5	71
136	Photocatalytic Hydrogen Generation from a Visible-Light-Responsive Metal–Organic Framework System: Stability versus Activity of Molybdenum Sulfide Cocatalysts. ACS Applied Materials & Interfaces, 2018, 10, 30035-30039.	4.0	71
137	Evaluating Charge Equilibration Methods To Generate Electrostatic Fields in Nanoporous Materials. Journal of Chemical Theory and Computation, 2019, 15, 382-401.	2.3	70
138	In silico design and screening of hypothetical MOF-74 analogs and their experimental synthesis. Chemical Science, 2016, 7, 6263-6272.	3.7	69
139	Adsorption and Diffusion ofn-Hexane/2-Methylpentane Mixtures in Zeolite Silicalite:Â Experiments and Modeling. Journal of Physical Chemistry B, 2001, 105, 7690-7698.	1.2	68
140	Understanding the Window Effect in Zeolite Catalysis. Angewandte Chemie - International Edition, 2003, 42, 3624-3626.	7.2	68
141	Preserving Porosity of Mesoporous Metal–Organic Frameworks through the Introduction of Polymer Guests. Journal of the American Chemical Society, 2019, 141, 12397-12405.	6.6	68
142	Improving the Mechanical Stability of Metal–Organic Frameworks Using Chemical Caryatids. ACS Central Science, 2018, 4, 832-839.	5.3	67
143	Anomalous Effects of Velocity Rescaling Algorithms: The Flying Ice Cube Effect Revisited. Journal of Chemical Theory and Computation, 2018, 14, 5262-5272.	2.3	66
144	Effect of surfactant structure on interfacial properties. Europhysics Letters, 2003, 63, 902-907.	0.7	65

#	Article	IF	CITATIONS
145	Simulation of adsorption and diffusion of hydrocarbons in zeolites. Faraday Discussions, 1997, 106, 93-104.	1.6	64
146	Mail-Order Metal–Organic Frameworks (MOFs): Designing Isoreticular MOF-5 Analogues Comprising Commercially Available Organic Molecules. Journal of Physical Chemistry C, 2013, 117, 12159-12167.	1.5	64
147	Unexpected Diffusion Anisotropy of Carbon Dioxide in the Metal–Organic Framework Zn ₂ (dobpdc). Journal of the American Chemical Society, 2018, 140, 1663-1673.	6.6	64
148	Charge Separation and Charge Carrier Mobility in Photocatalytic Metalâ€Organic Frameworks. Advanced Functional Materials, 2020, 30, 2003792.	7.8	64
149	A novel integrated Cr(<scp>vi</scp>) adsorption–photoreduction system using MOF@polymer composite beads. Journal of Materials Chemistry A, 2020, 8, 9629-9637.	5.2	64
150	Vapor-liquid equilibria of model alkanes. Journal of the American Chemical Society, 1993, 115, 6454-6455.	6.6	63
151	Too Many Materials and Too Many Applications: An Experimental Problem Waiting for a Computational Solution. ACS Central Science, 2020, 6, 1890-1900.	5.3	63
152	Comparison of mesoscopic phospholipid–water models. Physical Chemistry Chemical Physics, 2004, 6, 4142-4151.	1.3	62
153	A New United Atom Force Field for Adsorption of Alkenes in Zeolites. Journal of Physical Chemistry C, 2008, 112, 2492-2498.	1.5	62
154	Simulating Tethered Polymer Layers in Shear Flow with the Dissipative Particle Dynamics Technique. Macromolecules, 2002, 35, 7138-7148.	2.2	61
155	Understanding cage effects in the n-alkane conversion on zeolites. Journal of Catalysis, 2006, 237, 278-290.	3.1	61
156	On the Thermodynamics of Framework Breathing: A Free Energy Model for Gas Adsorption in MIL-53. Journal of Physical Chemistry C, 2013, 117, 11540-11554.	1.5	61
157	Separation of linear, mono-methyl and di-methyl alkanes in the 5–7 carbon atom range by exploiting configurational entropy effects during sorption on silicalite-1. Physical Chemistry Chemical Physics, 2001, 3, 4390-4398.	1.3	60
158	Shape selectivity through entropy. Journal of Catalysis, 2003, 214, 88-99.	3.1	60
159	Evaluation of various water models for simulation of adsorption in hydrophobic zeolites. Molecular Simulation, 2009, 35, 1067-1076.	0.9	60
160	In-Depth Study of the Influence of Hostâ^'Framework Flexibility on the Diffusion of Small Gas Molecules in One-Dimensional Zeolitic Pore Systems. Journal of Physical Chemistry C, 2007, 111, 17370-17381.	1.5	59
161	Combined Density Functional Theory and Monte Carlo Analysis of Monomolecular Cracking of Light Alkanes Over H-ZSM-5. Journal of Physical Chemistry C, 2012, 116, 23408-23417.	1.5	59
162	Commensurate Freezing ofn-Alkanes in Silicalite. Angewandte Chemie International Edition in English, 1995, 34, 2543-2544.	4.4	58

#	Article	IF	CITATIONS
163	Differences between MFI- and MEL-Type Zeolites in Paraffin Hydrocracking. Journal of Catalysis, 2001, 203, 281-291.	3.1	58
164	Nucleobase pairing and photodimerization in a biologically derived metal-organic framework nanoreactor. Nature Communications, 2019, 10, 1612.	5.8	58
165	A Molecular Mechanism of Hysteresis in Clay Swelling. Angewandte Chemie - International Edition, 2004, 43, 2650-2652.	7.2	57
166	High-Throughput Characterization of Porous Materials Using Graphics Processing Units. Journal of Chemical Theory and Computation, 2012, 8, 1684-1693.	2.3	57
167	Probing Adsorption Interactions in Metal–Organic Frameworks using X-ray Spectroscopy. Journal of the American Chemical Society, 2013, 135, 18183-18190.	6.6	56
168	Pre-transition effects mediate forces of assembly between transmembrane proteins. ELife, 2016, 5, e13150.	2.8	56
169	Location and Conformation ofn-Alkanes in Zeolites:Â An Analysis of Configurational-Bias Monte Carlo Calculations. The Journal of Physical Chemistry, 1996, 100, 17573-17581.	2.9	54
170	Understanding Zeolite Catalysis: Inverse Shape Selectivity Revised. Angewandte Chemie - International Edition, 2002, 41, 2499-2502.	7.2	54
171	The Grand Challenges in Carbon Capture, Utilization, and Storage. Frontiers in Energy Research, 2014, 2, .	1.2	54
172	In Silico Discovery of High Deliverable Capacity Metal–Organic Frameworks. Journal of Physical Chemistry C, 2015, 119, 186-195.	1.5	54
173	High-throughput computational screening of nanoporous adsorbents for CO ₂ capture from natural gas. Molecular Systems Design and Engineering, 2016, 1, 175-188.	1.7	54
174	High-Throughput Screening Approach for Nanoporous Materials Genome Using Topological Data Analysis: Application to Zeolites. Journal of Chemical Theory and Computation, 2018, 14, 4427-4437.	2.3	53
175	Simulating the self-assembly of model membranes. PhysChemComm, 1999, 2, 45.	0.8	52
176	Molecular dynamics simulations of the surface tension of n-hexane, n-decane and n-hexadecane. Molecular Physics, 2002, 100, 2471-2475.	0.8	52
177	Viscosities of the Mixtures of 1-Ethyl-3-Methylimidazolium Chloride with Water, Acetonitrile and Glucose: A Molecular Dynamics Simulation and Experimental Study. Journal of Physical Chemistry B, 2010, 114, 5790-5794.	1.2	52
178	Diffusion of isobutane in silicalite studied by transition path sampling. Journal of Chemical Physics, 2000, 113, 8791-8799.	1.2	51
179	Configurational Entropy Effects during Sorption of Hexane Isomers in Silicalite. Journal of Catalysis, 2001, 202, 395-401.	3.1	51
180	Simulating the effect of surfactant structure on bending moduli of monolayers. Journal of Chemical Physics, 2004, 120, 4897-4905.	1.2	51

#	Article	IF	CITATIONS
181	On the Electronic and Optical Properties of Metal–Organic Frameworks: Case Study of MIL-125 and MIL-125-NH ₂ . Journal of Physical Chemistry C, 2020, 124, 4065-4072.	1.5	50
182	Diversifying Databases of Metal Organic Frameworks for High-Throughput Computational Screening. ACS Applied Materials & Interfaces, 2021, 13, 61004-61014.	4.0	50
183	Vapour-liquid equilibria for quadrupolar Lennard-Jones fluids. Journal of Physics Condensed Matter, 1990, 2, 4281-4288.	0.7	49
184	Chain Length Effects of Linear Alkanes in Zeolite Ferrierite. 1. Sorption and13C NMR Experiments1. Journal of Physical Chemistry B, 1998, 102, 3945-3951.	1.2	49
185	Molecular Understanding of Diffusion in Confinement. Physical Review Letters, 2005, 95, 164505.	2.9	48
186	Adsorption Thermodynamics and Intrinsic Activation Parameters for Monomolecular Cracking of <i>n</i> -Alkanes on BrĀ,nsted Acid Sites in Zeolites. Journal of Physical Chemistry C, 2015, 119, 10427-10438.	1.5	48
187	Alkane hydrocracking: shape selectivity or kinetics?. Journal of Catalysis, 2004, 221, 241-251.	3.1	47
188	Mixed-linker UiO-66: structure–property relationships revealed by a combination of high-resolution powder X-ray diffraction and density functional theory calculations. Physical Chemistry Chemical Physics, 2017, 19, 1551-1559.	1.3	47
189	Simulating the effect of alcohol on the structure of a membrane. FEBS Letters, 2004, 568, 15-18.	1.3	45
190	Diffusion of chain molecules and mixtures in carbon nanotubes: The effect of host lattice flexibility and theory of diffusion in the Knudsen regime. Journal of Chemical Physics, 2007, 127, 024904.	1.2	45
191	CO ₂ Adsorption in Fe ₂ (dobdc): A Classical Force Field Parameterized from Quantum Mechanical Calculations. Journal of Physical Chemistry C, 2014, 118, 12230-12240.	1.5	45
192	CO ₂ induced phase transitions in diamine-appended metal–organic frameworks. Chemical Science, 2015, 6, 5177-5185.	3.7	45
193	Carbon Capture and Storage: introductory lecture. Faraday Discussions, 2016, 192, 9-25.	1.6	45
194	Chain Length Effects of Linear Alkanes in Zeolite Ferrierite. 2. Molecular Simulations1. Journal of Physical Chemistry B, 1998, 102, 3952-3958.	1.2	44
195	A Computational Method To Characterize Framework Aluminum in Aluminosilicates. Angewandte Chemie - International Edition, 2007, 46, 276-278.	7.2	44
196	Carbons with Regular Pore Geometry Yield Fundamental Insights into Supercapacitor Charge Storage. ACS Central Science, 2019, 5, 1813-1823.	5.3	44
197	Efficient Parallel Implementation of Molecular Dynamics on a Toroidal Network. Part I. Parallelizing Strategy. Journal of Computational Physics, 1993, 106, 101-107.	1.9	43
198	Dynamically Corrected Transition State Theory Calculations of Self-Diffusion in Anisotropic Nanoporous Materials. Journal of Physical Chemistry B, 2006, 110, 3164-3172.	1.2	43

#	Article	IF	CITATIONS
199	Similarityâ€Driven Discovery of Zeolite Materials for Adsorptionâ€Based Separations. ChemPhysChem, 2012, 13, 3595-3597.	1.0	43
200	Text Mining Metal–Organic Framework Papers. Journal of Chemical Information and Modeling, 2018, 58, 244-251.	2.5	43
201	In Silico Discovery of Covalent Organic Frameworks for Carbon Capture. ACS Applied Materials & Interfaces, 2020, 12, 21559-21568.	4.0	43
202	On the Effects of the External Surface on the Equilibrium Transport in Zeolite Crystals. Journal of Physical Chemistry C, 2010, 114, 300-310.	1.5	42
203	Performance of van der Waals Corrected Functionals for Guest Adsorption in the M ₂ (dobdc) Metal–Organic Frameworks. Journal of Physical Chemistry A, 2017, 121, 4139-4151.	1.1	41
204	Molecular simulation of hydrogen diffusion in interpenetrated metal–organic frameworks. Physical Chemistry Chemical Physics, 2008, 10, 3244.	1.3	40
205	<i>In Silico</i> Design of Three-Dimensional Porous Covalent Organic Frameworks via Known Synthesis Routes and Commercially Available Species. Journal of Physical Chemistry C, 2014, 118, 23790-23802.	1.5	40
206	Metal-organic frameworks as kinetic modulators for branched selectivity in hydroformylation. Nature Communications, 2020, 11, 1059.	5.8	40
207	AiiDAlab – an ecosystem for developing, executing, and sharing scientific workflows. Computational Materials Science, 2021, 188, 110165.	1.4	40
208	Recoil growth algorithm for chain molecules with continuous interactions. Molecular Physics, 1999, 97, 1243-1254.	0.8	39
209	Chain Length Dependencies of the Bending Modulus of Surfactant Monolayers. Physical Review Letters, 2004, 92, 116101.	2.9	39
210	Monte Carlo simulations in zeolites. Current Opinion in Solid State and Materials Science, 2001, 5, 455-461.	5.6	38
211	Molecular Simulations of Surface Forces and Film Rupture in Oil/Water/Surfactant Systems. Langmuir, 2004, 20, 11583-11593.	1.6	38
212	Toward smart carbon capture with machine learning. Cell Reports Physical Science, 2021, 2, 100396.	2.8	38
213	An explicit expression for finite-size corrections to the chemical potential. Journal of Physics Condensed Matter, 1989, 1, 8659-8665.	0.7	37
214	Mesoscopic simulations of phase transitions in lipid bilayers. Physical Chemistry Chemical Physics, 2004, 6, 4531.	1.3	37
215	Understanding Aluminum Location and Non-framework Ions Effects on Alkane Adsorption in Aluminosilicates:  A Molecular Simulation Study. Journal of Physical Chemistry C, 2007, 111, 10419-10426.	1.5	37
216	Predicting Local Transport Coefficients at Solid–Gas Interfaces. Journal of Physical Chemistry C, 2012, 116, 18878-18883.	1.5	37

#	Article	IF	CITATIONS
217	Water adsorption in metal–organic frameworks with openâ€metal sites. AICHE Journal, 2015, 61, 677-687.	1.8	37
218	Monte Carlo Study on the Water Meniscus Condensation and Capillary Force in Atomic Force Microscopy. Journal of Physical Chemistry C, 2012, 116, 21923-21931.	1.5	36
219	Efficient Monte Carlo Simulations of Gas Molecules Inside Porous Materials. Journal of Chemical Theory and Computation, 2012, 8, 2336-2343.	2.3	36
220	Cutting Materials in Half: A Graph Theory Approach for Generating Crystal Surfaces and Its Prediction of 2D Zeolites. ACS Central Science, 2018, 4, 235-245.	5.3	36
221	Buffered Coordination Modulation as a Means of Controlling Crystal Morphology and Molecular Diffusion in an Anisotropic Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 5044-5052.	6.6	35
222	Using collective knowledge to assign oxidation states of metal cations in metal–organic frameworks. Nature Chemistry, 2021, 13, 771-777.	6.6	35
223	Computer simulations of surfactant structures. Current Opinion in Colloid and Interface Science, 1996, 1, 411-415.	3.4	34
224	A novel algorithm to model the influence of host lattice flexibility in molecular dynamics simulations: Loading dependence of self-diffusion in carbon nanotubes. Journal of Chemical Physics, 2006, 124, 154706.	1.2	34
225	Statistical mechanical model of gas adsorption in porous crystals with dynamic moieties. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E287-E296.	3.3	34
226	Adsorbate-induced lattice deformation in IRMOF-74 series. Nature Communications, 2017, 8, 13945.	5.8	34
227	Making the collective knowledge of chemistry open and machine actionable. Nature Chemistry, 2022, 14, 365-376.	6.6	34
228	Understanding Smallâ€Molecule Interactions in Metal–Organic Frameworks: Coupling Experiment with Theory. Advanced Materials, 2015, 27, 5785-5796.	11.1	33
229	Cutting the cost of carbon capture: a case for carbon capture and utilization. Faraday Discussions, 2016, 192, 391-414.	1.6	33
230	Biporous Metal–Organic Framework with Tunable CO ₂ /CH ₄ Separation Performance Facilitated by Intrinsic Flexibility. ACS Applied Materials & Interfaces, 2018, 10, 36144-36156.	4.0	33
231	Pushing the limit of Cs incorporation into FAPbBr3 perovskite to enhance solar cells performances. APL Materials, 2019, 7, .	2.2	33
232	Solid-solid and liquid-solid phase equilibria for the restricted primitive model. Molecular Physics, 1996, 87, 159-166.	0.8	31
233	Shape-selective n-alkane hydroconversion at exterior zeolite surfaces. Journal of Catalysis, 2008, 256, 95-107.	3.1	31
234	Diffusion in confinement: kinetic simulations of self- and collective diffusion behavior of adsorbed gases. Physical Chemistry Chemical Physics, 2012, 14, 11600.	1.3	31

#	Article	IF	CITATIONS
235	Evaluating mixture adsorption models using molecular simulation. AICHE Journal, 2013, 59, 3054-3064.	1.8	31
236	Insights into the Electronic Properties and Charge Transfer Mechanism of a Porphyrin Ruthenium-Based Metal–Organic Framework. Chemistry of Materials, 2020, 32, 4194-4204.	3.2	31
237	High-pressure liquid phase hydroconversion of heptane/nonane mixtures on Pt/H-Y zeolite catalyst. Journal of Catalysis, 2003, 220, 66-73.	3.1	30
238	Molecular path control in zeolite membranes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12317-12320.	3.3	30
239	Metal–Organic Frameworks Invert Molecular Reactivity: Lewis Acidic Phosphonium Zwitterions Catalyze the Aldol-Tishchenko Reaction. Journal of the American Chemical Society, 2017, 139, 18166-18169.	6.6	30
240	Applicability of Tail Corrections in the Molecular Simulations of Porous Materials. Journal of Chemical Theory and Computation, 2019, 15, 5635-5641.	2.3	30
241	Combining Dissipative Particle Dynamics and Monte Carlo Techniques. Journal of Computational Physics, 1998, 147, 507-517.	1.9	29
242	Small scale membrane mechanics. Biomechanics and Modeling in Mechanobiology, 2014, 13, 697-711.	1.4	29
243	The selectivity of -hexane hydroconversion on MOR-, MAZ-, and FAU-type zeolites. Journal of Catalysis, 2004, 228, 121-129.	3.1	28
244	Understanding the effect of side groups in ionic liquids on carbon-capture properties: a combined experimental and theoretical effort. Physical Chemistry Chemical Physics, 2013, 15, 3264.	1.3	28
245	Impact of the strength and spatial distribution of adsorption sites on methane deliverable capacity in nanoporous materials. Chemical Engineering Science, 2017, 159, 18-30.	1.9	26
246	The condition of microscopic reversibility in Gibbs ensemble Monte Carlo simulations of phase equilibria. Molecular Physics, 1995, 85, 435-447.	0.8	25
247	A Coarse-Graining Approach for the Proton Complex in Protonated Aluminosilicates. Journal of Physical Chemistry B, 2006, 110, 5838-5841.	1.2	25
248	Modeling Methane Adsorption in Interpenetrating Porous Polymer Networks. Journal of Physical Chemistry C, 2013, 117, 20037-20042.	1.5	25
249	Translational and Rotational Motion of C8 Aromatics Adsorbed in Isotropic Porous Media (MOF-5): NMR Studies and MD Simulations. Journal of Physical Chemistry C, 2017, 121, 15456-15462.	1.5	25
250	Lanthanide-based near-infrared emitting metal–organic frameworks with tunable excitation wavelengths and high quantum yields. Chemical Communications, 2018, 54, 6816-6819.	2.2	25
251	Molecular simulations of adsorption isotherms of small alkanes in FER-, TON-, MTW- and DON-type zeolites. Microporous and Mesoporous Materials, 2004, 68, 37-43.	2.2	24
252	Sim-to-real transfer reinforcement learning for control of thermal effects of an atmospheric pressure plasma jet. Plasma Sources Science and Technology, 2019, 28, 095019.	1.3	24

#	Article	IF	CITATIONS
253	Energy-based descriptors for photo-catalytically active metal–organic framework discovery. Journal of Materials Chemistry A, 2020, 8, 4473-4482.	5.2	24
254	Molecular Monte Carlo Simulations Using Graphics Processing Units: To Waste Recycle or Not?. Journal of Chemical Theory and Computation, 2011, 7, 3208-3222.	2.3	23
255	Efficient Determination of Accurate Force Fields for Porous Materials Using ab Initio Total Energy Calculations. Journal of Physical Chemistry C, 2014, 118, 2693-2701.	1.5	23
256	Origin of the Strong Interaction between Polar Molecules and Copper(II) Paddle-Wheels in Metal Organic Frameworks. Journal of Physical Chemistry C, 2017, 121, 15135-15144.	1.5	23
257	Geometric landscapes for material discovery within energy–structure–function maps. Chemical Science, 2020, 11, 5423-5433.	3.7	23
258	Effect of Chain Length on the Adsorption Behavior ofn-Alkanes in Ferrierite. Angewandte Chemie - International Edition, 1998, 37, 1081-1083.	7.2	22
259	The Gibbs Ensemble. , 2002, , 201-224.		21
260	Shedding Light on the Protonation States and Location of Protonated N Atoms of Adenine in Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 1888-1900.	1.9	21
261	Free Energy Calculations. , 2002, , 167-200.		20
262	Robust Driving Forces for Transmembrane Helix Packing. Biophysical Journal, 2012, 103, 1227-1235.	0.2	20
263	Formation pathways of metal–organic frameworks proceeding through partial dissolution of the metastable phase. CrystEngComm, 2017, 19, 3407-3413.	1.3	20
264	Automated Multiscale Approach To Predict Self-Diffusion from a Potential Energy Field. Journal of Chemical Theory and Computation, 2019, 15, 2127-2141.	2.3	20
265	Comment on â€~â€~Determination of the chemical potential of polymeric systems from Monte Carlo simulations''. Physical Review Letters, 1992, 68, 3657-3657.	2.9	19
266	Molecular order and disorder of surfactants in clay nanocomposites. Physical Chemistry Chemical Physics, 2006, 8, 2700.	1.3	19
267	Diffusion in Confinement:Â Agreement between Experiments Better than Expected. Journal of Physical Chemistry B, 2006, 110, 14529-14530.	1.2	19
268	Toward a Materials Genome Approach for Ionic Liquids: Synthesis Guided by Ab Initio Property Maps. Journal of Physical Chemistry B, 2014, 118, 13609-13620.	1.2	19
269	Carbon capture turned upside down: high-temperature adsorption & low-temperature desorption (HALD). Energy and Environmental Science, 2015, 8, 2480-2491.	15.6	19
270	Combined Nuclear Magnetic Resonance and Molecular Dynamics Study of Methane Adsorption in M ₂ (dobdc) Metal–Organic Frameworks. Journal of Physical Chemistry C, 2019, 123, 12286-12295.	1.5	18

#	Article	IF	CITATIONS
271	Amine Dynamics in Diamine-Appended Mg ₂ (dobpdc) Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2019, 10, 7044-7049.	2.1	18
272	Two-sided bounds on the free energy from local states in Monte Carlo simulations. Journal of Statistical Physics, 1989, 56, 247-260.	0.5	17
273	Local-states method for the calculation of free energies in Monte Carlo simulations of lattice models. Physical Review A, 1990, 41, 1175-1178.	1.0	17
274	Towards an understanding of membrane-mediated protein–protein interactions. Faraday Discussions, 2010, 144, 359-367.	1.6	17
275	Effects of Pore and Cage Topology on the Thermodynamics of <i>n</i> -Alkane Adsorption at BrĄ̃nsted Protons in Zeolites at High Temperature. Journal of Physical Chemistry C, 2017, 121, 1618-1638.	1.5	17
276	Elucidating alkane adsorption in sodium-exchanged zeolites from molecular simulations to empirical equations. Applied Surface Science, 2005, 252, 716-722.	3.1	16
277	Evaluation of a New Force Field for Describing the Adsorption Behavior of Alkanes in Various Pure Silica Zeolites. Journal of Physical Chemistry B, 2006, 110, 20166-20171.	1.2	16
278	Nanoporous Materials Can Tune the Critical Point of a Pure Substance. Angewandte Chemie - International Edition, 2015, 54, 14349-14352.	7.2	16
279	Uncovering the Local Magnesium Environment in the Metal–Organic Framework Mg2(dobpdc) Using 25Mg NMR Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 19938-19945.	1.5	16
280	Flat-Histogram Monte Carlo as an Efficient Tool To Evaluate Adsorption Processes Involving Rigid and Deformable Molecules. Journal of Chemical Theory and Computation, 2018, 14, 6149-6158.	2.3	16
281	Simulating Enhanced Methane Deliverable Capacity of Guest Responsive Pores in Intrinsically Flexible MOFs. Journal of Physical Chemistry Letters, 2019, 10, 5929-5934.	2.1	16
282	A data-driven perspective on the colours of metal–organic frameworks. Chemical Science, 2021, 12, 3587-3598.	3.7	16
283	Toward Optimal Photocatalytic Hydrogen Generation from Water Using Pyrene-Based Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 57118-57131.	4.0	16
284	PSII–LHCII Supercomplex Organizations in Photosynthetic Membrane by Coarse-Grained Simulation. Journal of Physical Chemistry B, 2015, 119, 3999-4008.	1.2	15
285	DORI Reveals the Influence of Noncovalent Interactions on Covalent Bonding Patterns in Molecular Crystals Under Pressure. Journal of Physical Chemistry Letters, 2019, 10, 1482-1488.	2.1	15
286	Thermoelasticity of Flexible Organic Crystals from Quasi-harmonic Lattice Dynamics: The Case of Copper(II) Acetylacetonate. Journal of Physical Chemistry Letters, 2020, 11, 8543-8548.	2.1	15
287	Molecular simulation of adsorption of alkanes in sodium MOR-type zeolites using a new force field. Physical Chemistry Chemical Physics, 2006, 8, 1852.	1.3	14
288	Lipid mediated packing of transmembrane helices – a dissipative particle dynamics study. Soft Matter, 2013, 9, 2673.	1.2	14

#	Article	IF	CITATIONS
289	Optical absorption properties of metal–organic frameworks: solid state <i>versus</i> molecular perspective. Physical Chemistry Chemical Physics, 2020, 22, 19512-19521.	1.3	14
290	Sustainable Hydrogenation of Nitroarenes to Anilines with Highly Active <i>inâ€situ</i> Generated Copper Nanoparticles. ChemCatChem, 2020, 12, 2833-2839.	1.8	14
291	On the efficient sampling of pathways in the transition path ensemble. PhysChemComm, 2001, 4, 11.	0.8	13
292	Long-Range Interactions. , 2002, , 291-320.		13
293	Adsorption and diffusion in zeolites: the pitfall of isotypic crystal structures. Molecular Simulation, 2011, 37, 986-989.	0.9	13
294	Making Molecules Vibrate: Interactive Web Environment for the Teaching of Infrared Spectroscopy. Journal of Chemical Education, 2022, 99, 561-569.	1.1	13
295	Alcohol solubility in a lipid bilayer: Efficient grand-canonical simulation of an interfacially active molecule. Journal of Chemical Physics, 2010, 132, 064107.	1.2	12
296	Redox chemistry and metal–insulator transitions intertwined in a nano-porous material. Nature Communications, 2014, 5, 4032.	5.8	12
297	Taking lanthanides out of isolation: tuning the optical properties of metal–organic frameworks. Chemical Science, 2020, 11, 4164-4170.	3.7	12
298	Dissipative Particle Dynamics. , 2002, , 465-478.		11
299	Molecular simulations of the adsorption of cycloalkanes in MFI-type silica. Physical Chemistry Chemical Physics, 2005, 7, 2622.	1.3	11
300	From Isolated Porphyrin Ligands to Periodic Al-PMOF: A Comparative Study of the Optical Properties Using DFT/TDDFT. Journal of Physical Chemistry C, 2020, 124, 21751-21760.	1.5	11
301	Simulating surfactant self-assembly. Journal of Physics Condensed Matter, 1994, 6, A351-A356.	0.7	10
302	Chemical Hieroglyphs: Abstract Depiction of Complex Void Space Topology of Nanoporous Materials. Journal of Chemical Information and Modeling, 2010, 50, 461-469.	2.5	10
303	Methane storage capabilities of diamond analogues. Physical Chemistry Chemical Physics, 2013, 15, 20937.	1.3	10
304	Common workflows for computing material properties using different quantum engines. Npj Computational Materials, 2021, 7, .	3.5	10
305	Characterization of Chemisorbed Species and Active Adsorption Sites in Mg–Al Mixed Metal Oxides for High-Temperature CO ₂ Capture. Chemistry of Materials, 2022, 34, 3893-3901.	3.2	10
306	Ab Initio Flexible Force Field for Metal–Organic Frameworks Using Dummy Model Coordination Bonds. Journal of Chemical Theory and Computation, 2019, 15, 3666-3677.	2.3	9

#	Article	IF	CITATIONS
307	Kommensurables Einfrieren von <i>n</i> â€Alkanen im Silicalit. Angewandte Chemie, 1995, 107, 2765-2767.	1.6	8
308	Configurational-Bias Monte Carlo (CB-MC) Calculations of <i>n</i> -Alkane Sorption in Zeolites Rho and Fer. Molecular Simulation, 1997, 19, 301-318.	0.9	8
309	Effects of Degrees of Freedom on Calculating Diffusion Properties in Nanoporous Materials. Journal of Chemical Theory and Computation, 2022, , .	2.3	8
310	Molecular Simulations of Thermodynamic Properties: From Argon to Long-Chain Paraffins. Industrial & Engineering Chemistry Research, 1995, 34, 4166-4169.	1.8	7
311	Comment on "Cluster Formation of Transmembrane Proteins Due to Hydrophobic Mismatching― Physical Review Letters, 2009, 102, 219801; author reply 219802.	2.9	7
312	Predicting Product Distribution of Propene Dimerization in Nanoporous Materials. ACS Catalysis, 2017, 7, 3940-3948.	5.5	7
313	Trends in atomistic simulation software usage [Article v1.0]. Living Journal of Computational Molecular Science, 2021, 3, .	2.2	7
314	Molecular simulations of fluid phase equilibria. Fluid Phase Equilibria, 1996, 116, 249-256.	1.4	6
315	Rare Events. , 2002, , 431-464.		6
316	Dualâ€Functional Photocatalysis: Concurrent Photocatalytic Hydrogen Generation and Dye Degradation Using MILâ€125â€NH ₂ under Visible Light Irradiation (Adv. Funct. Mater. 52/2018). Advanced Functional Materials, 2018, 28, 1870373.	7.8	6
317	Multilevel screening of computationâ€ready, experimental metalâ€organic frameworks for natural gas purification. AICHE Journal, 2021, 67, e17279.	1.8	6
318	Carbon capture and storage: making fossil fuels great again?. Europhysics News, 2020, 51, 20-22.	0.1	6
319	Data-Driven Matching of Experimental Crystal Structures and Gas Adsorption Isotherms of Metal–Organic Frameworks. Journal of Chemical & Engineering Data, 2022, 67, 1743-1756.	1.0	6
320	Free energies and phase equilibria of chain molecules. Macromolecular Symposia, 1994, 81, 343-354.	0.4	5
321	Computational physics in petrochemical industry. Physica Scripta, 1996, T66, 80-84.	1.2	5
322	On the Equivalence of Schemes for Simulating Bilayers at Constant Surface Tension. Journal of Chemical Theory and Computation, 2012, 8, 404-417.	2.3	5
323	Screening Materials Relevant for Energy Technologies. Chimia, 2015, 69, 248-252.	0.3	5
324	CCS – A technology for now: general discussion. Faraday Discussions, 2016, 192, 125-151.	1.6	5

#	Article	IF	CITATIONS
325	Metalâ€Organic Framework Beads: Porous Metal–Organic Framework@Polymer Beads for Iodine Capture and Recovery Using a Gasâ€6parged Column (Adv. Funct. Mater. 30/2018). Advanced Functional Materials, 2018, 28, 1870211.	7.8	5
326	A new approach for calculating the accessible volume in equations of state for mixtures. I. Theory and implementation in the van der Waals equation of state. Fluid Phase Equilibria, 1988, 43, 171-180.	1.4	4
327	Simulation of phase coexistence for complex molecules. Computers in Physics, 1997, 11, 246.	0.6	4
328	CCS – A technology for the future: general discussion. Faraday Discussions, 2016, 192, 303-335.	1.6	4
329	Guest-dependent negative thermal expansion in a lanthanide-based metal–organic framework. CrystEngComm, 2019, 21, 5292-5298.	1.3	4
330	A new approach for calculating the accessible volume in equations of state for mixtures. II. Application to Lennard-Jones mixtures. Fluid Phase Equilibria, 1988, 43, 181-189.	1.4	3
331	Reply to the Comment on "Computer Simulation of Incommensurate Diffusion in Zeolites:Â Understanding Window Effects― Journal of Physical Chemistry B, 2004, 108, 16330-16330.	1.2	2
332	Molecular simulations of the adsorption and diffusion of hydrocarbons in molecular sieves. Studies in Surface Science and Catalysis, 2007, 170, 121-129.	1.5	2
333	Computational carbon capture. , 2014, , .		2
334	Computer-Aided Search for Materials to Store Natural Gas for Vehicles. Frontiers for Young Minds, 2015, 3, .	0.8	2
335	Simulating Adsorption of Alkanes in Zeolites. , 2003, , .		1
336	Clustering of Proteins Embedded in Lipid Bilayers: a Monte Carlo Study. AlP Conference Proceedings, 2007, , .	0.3	1
337	At Berkeley, we recycle everything but CO ₂ . , 2013, 3, 159-160.		1
338	Pre-Transition Effects Mediate Forces of Assembly between Transmembrane Proteins: The Orderphobic Effect. Biophysical Journal, 2016, 110, 567a.	0.2	1
339	Can Metal–Organic Frameworks Be Used for Cannabis Breathalyzers?. ACS Applied Materials & Interfaces, 2019, 11, 34777-34786.	4.0	1
340	Mesoscopic Simulations of Biological Membranes. Lecture Notes in Physics, 2006, , 259-286.	0.3	1
341	Some applications of the configurational-bias Monte Carlo technique. , 1998, , .		0
342	Modeling Lipid-Mediated Transmembrane Protein Aggregation. Biophysical Journal, 2010, 98, 487a.	0.2	0

#	Article	IF	CITATIONS
343	A Fundamental Force Governing Protein Self-Assembly in Membranes. Biophysical Journal, 2015, 108, 241a.	0.2	0
344	A Fundamental Force that Regulates Nano-Clustering of Proteins in Biological Membranes. Biophysical Journal, 2015, 108, 18a.	0.2	0
345	Modelling – from molecules to mega-scale: general discussion. Faraday Discussions, 2016, 192, 493-509.	1.6	0
346	A bi-porous metal–organic framework with tuneable sorption performance facilitated by intrinsic flexibility. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e261-e261.	0.0	0
347	Distinguishing metal–organic frameworks. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e152-e152.	0.0	0