
Hao Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9409125/publications.pdf Version: 2024-02-01

Ηλο Ημ

#	Article	IF	CITATIONS
1	Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocolloids, 2013, 30, 647-655.	5.6	583
2	The effect of high intensity ultrasonic pre-treatment on the properties of soybean protein isolate gel induced by calcium sulfate. Food Hydrocolloids, 2013, 32, 303-311.	5.6	222
3	Acid-induced gelation behavior of soybean protein isolate with high intensity ultrasonic pre-treatments. Ultrasonics Sonochemistry, 2013, 20, 187-195.	3.8	210
4	Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions. Trends in Food Science and Technology, 2020, 105, 363-377.	7.8	189
5	Effect of high intensity ultrasound on physicochemical and functional properties of aggregated soybean β-conglycinin and glycinin. Food Hydrocolloids, 2015, 45, 102-110.	5.6	159
6	Effect of different oils and ultrasound emulsification conditions on the physicochemical properties of emulsions stabilized by soy protein isolate. Ultrasonics Sonochemistry, 2018, 49, 283-293.	3.8	145
7	Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Carbohydrate Polymers, 2016, 151, 1068-1072.	5.1	130
8	Characterization and functional properties of mango peel pectin extracted by ultrasound assisted citric acid. International Journal of Biological Macromolecules, 2016, 91, 794-803.	3.6	109
9	Effect of high intensity ultrasound on transglutaminase-catalyzed soy protein isolate cold set gel. Ultrasonics Sonochemistry, 2016, 29, 380-387.	3.8	107
10	Effect of high intensity ultrasound on physicochemical and functional properties of soybean glycinin at different ionic strengths. Innovative Food Science and Emerging Technologies, 2016, 34, 205-213.	2.7	94
11	Effect of ultrasound pre-treatment on formation of transglutaminase-catalysed soy protein hydrogel as a riboflavin vehicle for functional foods. Journal of Functional Foods, 2015, 19, 182-193.	1.6	87
12	Effect of high intensity ultrasound on the structure and physicochemical properties of soy protein isolates produced by different denaturation methods. Food Hydrocolloids, 2019, 97, 105216.	5.6	78
13	Effects of different ionic strengths on the physicochemical properties of plant and animal proteins-stabilized emulsions fabricated using ultrasound emulsification. Ultrasonics Sonochemistry, 2019, 58, 104627.	3.8	78
14	The role of conformational state of pH-shifted β-conglycinin on the oil/water interfacial properties and emulsifying capacities. Food Hydrocolloids, 2020, 108, 105990.	5.6	68
15	Ball-milling changed the physicochemical properties of SPI and its cold-set gels. Journal of Food Engineering, 2017, 195, 158-165.	2.7	53
16	Effect of ultrasound and coagulant types on properties of β-carotene bulk emulsion gels stabilized by soy protein. Food Hydrocolloids, 2022, 123, 107146.	5.6	40
17	Effects of protein concentration, pH, and NaCl concentration on the physicochemical, interfacial, and emulsifying properties of \hat{l}^2 -conglycinin. Food Hydrocolloids, 2021, 118, 106784.	5.6	34
18	Changes on the rheological properties of pectin-enriched mango nectar by high intensity ultrasound. LWT - Food Science and Technology, 2018, 91, 414-422.	2.5	31

Hao Hu

#	Article	IF	CITATIONS
19	Effects of Ultrasonic-Assisted Extraction on the Physicochemical Properties of Different Walnut Proteins. Molecules, 2019, 24, 4260.	1.7	30
20	Effect of ultrasound on functional properties, flavor characteristics, and storage stability of soybean milk. Food Chemistry, 2022, 381, 132158.	4.2	27
21	Interfacial and emulsifying properties of β-conglycinin/pectin mixtures at the oil/water interface: Effect of pH. Food Hydrocolloids, 2020, 109, 106145.	5.6	26
22	Ultrasound-assisted gelation of β-carotene enriched oleogels based on candelilla wax-nut oils: Physical properties and in-vitro digestion analysis. Ultrasonics Sonochemistry, 2021, 79, 105762.	3.8	21
23	Effects of different nut oils on the structures and properties of gelâ€like emulsions induced by ultrasound using soy protein as an emulsifier. International Journal of Food Science and Technology, 2021, 56, 1649-1660.	1.3	19
24	Lipo-Dipeptide as an Emulsifier: Performance and Possible Mechanism. Journal of Agricultural and Food Chemistry, 2019, 67, 6377-6386.	2.4	16
25	A comprehensive study on structures and characterizations of 7S protein treated by high intensity ultrasound at different pH and ionic strengths. Food Chemistry, 2022, 373, 131378.	4.2	14
26	A Comprehensive Study on Self-Assembly and Gelation of C ₁₃ -Dipeptides—From Design Strategies to Functionalities. Biomacromolecules, 2020, 21, 670-679.	2.6	13
27	Structural and rheological behavior of β-lactoglobulins influenced by high hydrostatic pressure – From a single molecule to the aggregates. Food Hydrocolloids, 2022, 133, 107622.	5.6	3
28	A dielectric loss angle based portable biosensor system for bacterial concentration detection. RSC Advances, 2015, 5, 85919-85927.	1.7	2