Francesco Tassinari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9408871/publications.pdf

Version: 2024-02-01

44 papers 1,901 citations

361296 20 h-index 42 g-index

44 all docs 44 docs citations

44 times ranked 1802 citing authors

#	Article	IF	CITATIONS
1	Temperature-Dependent Chiral-Induced Spin Selectivity Effect: Experiments and Theory. Journal of Physical Chemistry C, 2022, 126, 3257-3264.	1.5	50
2	Twisted molecular wires polarize spin currents at room temperature. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	8
3	Chirality enhances oxygen reduction. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	20
4	Helicity Control in the Aggregation of Achiral Squaraine Dyes in Solution and Thin Films. Chemistry - A European Journal, 2021, 27, 298-306.	1.7	11
5	Spinâ€selective electron transmission through selfâ€assembled monolayers of doubleâ€stranded peptide nucleic acid. Chirality, 2021, 33, 93-102.	1.3	23
6	Simultaneous High-Purity Enantiomeric Resolution of Conglomerates Using Magnetic Substrates. Crystal Growth and Design, 2021, 21, 2925-2931.	1.4	12
7	Temperature Dependence of Charge and Spin Transfer in Azurin. Journal of Physical Chemistry C, 2021, 125, 9875-9883.	1.5	26
8	Multistate Switching of Spin Selectivity in Electron Transport through Lightâ€Driven Molecular Motors. Advanced Science, 2021, 8, e2101773.	5.6	17
9	The Electron Spin as a Chiral Reagent. Angewandte Chemie - International Edition, 2020, 59, 1653-1658.	7.2	65
10	The Electron Spin as a Chiral Reagent. Angewandte Chemie, 2020, 132, 1670-1675.	1.6	8
11	Spin-dependent charge transfer at chiral electrodes probed by magnetic resonance. Physical Chemistry Chemical Physics, 2020, 22, 997-1002.	1.3	12
12	Asymmetric reactions induced by electron spin polarization. Physical Chemistry Chemical Physics, 2020, 22, 21570-21582.	1.3	40
13	Relation between Morphology and Chiroptical Properties in Chiral Conducting Polymer Films: A Case Study in Chiral PEDOT. Macromolecules, 2020, 53, 9521-9528.	2.2	6
14	Spin-Dependent Enantioselective Electropolymerization. Journal of Physical Chemistry C, 2020, 124, 20974-20980.	1.5	16
15	Correlation between Ferromagnetic Layer Easy Axis and the Tilt Angle of Self Assembled Chiral Molecules. Molecules, 2020, 25, 6036.	1.7	19
16	Magnetoelectrochemistry and Asymmetric Electrochemical Reactions. Magnetochemistry, 2020, 6, 1.	1.0	10
17	Electron Transfer via Helical Oligopeptide to Laccase Including Chiral Schiff Base Copper Mediators. Symmetry, 2020, 12, 808.	1.1	9
18	Highly Efficient and Tunable Filtering of Electrons' Spin by Supramolecular Chirality of Nanofiberâ€Based Materials. Advanced Materials, 2020, 32, e1904965.	11.1	139

#	Article	IF	CITATIONS
19	Low-Resistance Molecular Wires Propagate Spin-Polarized Currents. Journal of the American Chemical Society, 2019, 141, 14707-14711.	6.6	33
20	Electric-Field-Enhanced Adsorption of Chiral Molecules on Ferromagnetic Substrates. Journal of Physical Chemistry B, 2019, 123, 9443-9448.	1.2	8
21	Enantioseparation by crystallization using magnetic substrates. Chemical Science, 2019, 10, 5246-5250.	3.7	62
22	Controlling Chemical Selectivity in Electrocatalysis with Chiral CuO-Coated Electrodes. Journal of Physical Chemistry C, 2019, 123, 3024-3031.	1.5	92
23	Chirality Dependent Charge Transfer Rate in Oligopeptides. Advanced Materials, 2018, 30, e1706423.	11.1	48
24	Enhanced Electrochemical Water Splitting with Chiral Molecule-Coated Fe ₃ O ₄ Nanoparticles. ACS Energy Letters, 2018, 3, 2308-2313.	8.8	103
25	Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates. Science, 2018, 360, 1331-1334.	6.0	283
26	Control of Electrons' Spin Eliminates Hydrogen Peroxide Formation During Water Splitting. Journal of the American Chemical Society, 2017, 139, 2794-2798.	6.6	225
27	î-Stacking Signature in NMR Solution Spectra of Thiophene-Based Conjugated Polymers. ACS Omega, 2017, 2, 5775-5784.	1.6	35
28	High Circular Polarization of Electroluminescence Achieved <i>via</i> Self-Assembly of a Light-Emitting Chiral Conjugated Polymer into Multidomain Cholesteric Films. ACS Nano, 2017, 11, 12713-12722.	7.3	197
29	Enhanced Hydrogen Production with Chiral Conductive Polymer-Based Electrodes. Journal of Physical Chemistry C, 2017, 121, 15777-15783.	1.5	40
30	Enhanced Hydrogen Production With Chiral Conductive Polymer-Based Electrodes. Journal of Physical Chemistry A, 2017 , , .	1.1	2
31	Chiral Polythiophenes., 2017,, 277-297.		0
32	Polymers with Alkylsulfanyl Side Chains for Bulk Heterojunction Solar Cells: Toward a Greener Strategy. Macromolecular Chemistry and Physics, 2017, 218, 1700111.	1.1	2
33	Polymers for application in organic solar cells: Bithiophene can work better than thienothiophene when coupled to benzodithiophene. Journal of Polymer Science Part A, 2016, 54, 1603-1614.	2.5	5
34	Conductive Polymers: Chiral Conductive Polymers as Spin Filters (Adv. Mater. 11/2015). Advanced Materials, 2015, 27, 1968-1968.	11.1	0
35	Chiral Conductive Polymers as Spin Filters. Advanced Materials, 2015, 27, 1924-1927.	11.1	121
36	New One-Step Thiol Functionalization Procedure for Ni by Self-Assembled Monolayers. Langmuir, 2015, 31, 3546-3552.	1.6	42

#	Article	IF	CITATIONS
37	Low band gap polymers for application in solar cells: synthesis and characterization of thienothiophene–thiophene copolymers. Polymer Chemistry, 2014, 5, 2391.	1.9	25
38	Electric-Field-Driven Alignment of Chiral Conductive Polymer Thin Films. Langmuir, 2014, 30, 4838-4843.	1.6	14
39	On the co-adsorption process of sodium dodecyl sulfate and sodium dodecylbenzenesulfonate on a 1-decanethiol-functionalized Au electrode, as a corrosion inhibiting mimic process. Journal of Applied Electrochemistry, 2013, 43, 101-106.	1.5	4
40	Regiochemistry in the electrochemical assisted grafting of glassy carbon. With focus on sterical hindrance of lateral chains in the electroreduction process of multi-functionalized bithiophene. Journal of Electroanalytical Chemistry, 2013, 710, 70-75.	1.9	2
41	On the Hybrid Glassy Carbon Electrode/OligoThiophene/Ag(NP) Interface. Langmuir, 2012, 28, 15505-15512.	1.6	10
42	Functionalization of glassy carbon surface by means of aliphatic and aromatic amino acids. An experimental and theoretical integrated approach. Electrochimica Acta, 2012, 75, 49-55.	2.6	12
43	A novel copolymer from benzodithiophene and alkylsulfanyl-bithiophene: Synthesis, characterization and application in polymer solar cells. Solar Energy Materials and Solar Cells, 2012, 104, 45-52.	3.0	30
44	(Alkylsulfanyl)bithiopheneâ€ <i>alt</i> å€Fluorene: Ï€â€Conjugated Polymers for Organic Solar Cells. European Journal of Organic Chemistry, 2011, 2011, 5659-5667.	1.2	15