
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9408737/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measurements from the University of Colorado RAAVEN Uncrewed Aircraft System during ATOMIC. Earth System Science Data, 2022, 14, 19-31.	9.9	8
2	Overview of the MOSAiC expedition: Atmosphere. Elementa, 2022, 10, .	3.2	121
3	Overview of the MOSAiC expedition: Snow and sea ice. Elementa, 2022, 10, .	3.2	91
4	Observations of the lower atmosphere from the 2021 WiscoDISCO campaign. Earth System Science Data, 2022, 14, 2129-2145.	9.9	4
5	Assimilation of a Coordinated Fleet of Uncrewed Aircraft System Observations in Complex Terrain: Observing System Experiments. Monthly Weather Review, 2022, 150, 2737-2763.	1.4	3
6	Testing the efficacy of atmospheric boundary layer height detection algorithms using uncrewed aircraft system data from MOSAiC. Atmospheric Measurement Techniques, 2022, 15, 4001-4022.	3.1	18
7	Measurement report: Properties of aerosol and gases in the vertical profile during the LAPSE-RATE campaign. Atmospheric Chemistry and Physics, 2021, 21, 517-533.	4.9	10
8	Assessing the vertical structure of Arctic aerosols using balloon-borne measurements. Atmospheric Chemistry and Physics, 2021, 21, 1737-1757.	4.9	25
9	Measurements from the RV <i>Ronald H. Brown</i> and related platforms as part of the Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC). Earth System Science Data, 2021, 13, 1759-1790.	9.9	28
10	Evaluation of the Rapid Refresh Numerical Weather Prediction Model Over Arctic Alaska. Weather and Forecasting, 2021, , .	1.4	0
11	Assimilation of a Coordinated Fleet of Uncrewed Aircraft System Observations in Complex Terrain: EnKF System Design and Preliminary Assessment. Monthly Weather Review, 2021, 149, 1459-1480.	1.4	15
12	University of Colorado and Black Swift Technologies RPAS-based measurements of the lower atmosphere during LAPSE-RATE. Earth System Science Data, 2021, 13, 2515-2528.	9.9	5
13	Atmospheric aerosol, gases, and meteorological parameters measured during the LAPSE-RATE campaign by the Finnish Meteorological Institute and Kansas State University. Earth System Science Data, 2021, 13, 2909-2922.	9.9	3
14	Observations from the NOAA P-3 aircraft during ATOMIC. Earth System Science Data, 2021, 13, 3281-3296.	9.9	14
15	EUREC ⁴ A. Earth System Science Data, 2021, 13, 4067-4119.	9.9	88
16	Liquid Containing Clouds at the North Slope of Alaska Demonstrate Sensitivity to Local Industrial Aerosol Emissions. Geophysical Research Letters, 2021, 48, e2021GL094307.	4.0	2
17	Measurements from mobile surface vehicles during the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE). Earth System Science Data, 2021, 13, 155-169.	9.9	12
18	Eye of the Storm: Observing Hurricanes with a Small Unmanned Aircraft System. Bulletin of the American Meteorological Society, 2020, 101, E186-E205.	3.3	41

#	Article	IF	CITATIONS
19	Development of Community, Capabilities, and Understanding through Unmanned Aircraft-Based Atmospheric Research: The LAPSE-RATE Campaign. Bulletin of the American Meteorological Society, 2020, 101, E684-E699.	3.3	38
20	Hydrometeor Shape Variability in Snowfall as Retrieved from Polarimetric Radar Measurements. Journal of Applied Meteorology and Climatology, 2020, 59, 1503-1517.	1.5	11
21	Data generated during the 2018 LAPSE-RATE campaign: an introduction and overview. Earth System Science Data, 2020, 12, 3357-3366.	9.9	18
22	Current and Future Uses of UAS for Improved Forecasts/Warnings and Scientific Studies. Bulletin of the American Meteorological Society, 2020, 101, E1322-E1328.	3.3	10
23	LAUNCHED INTO THE HURRICANE: Observations from Small Unmanned Aircraft. Bulletin of the American Meteorological Society, 2020, 101, 122-128.	3.3	0
24	Relationships between Immersion Freezing and Crystal Habit for Arctic Mixed-Phase Clouds—A Numerical Study. Journals of the Atmospheric Sciences, 2020, 77, 2411-2438.	1.7	3
25	Can liquid cloud microphysical processes be used for vertically pointing cloud radar calibration?. Atmospheric Measurement Techniques, 2019, 12, 3151-3171.	3.1	7
26	Observational and Modeling Study of Ice Hydrometeor Radar Dual-Wavelength Ratios. Journal of Applied Meteorology and Climatology, 2019, 58, 2005-2017.	1.5	18
27	Intercomparison of Small Unmanned Aircraft System (sUAS) Measurements for Atmospheric Science during the LAPSE-RATE Campaign. Sensors, 2019, 19, 2179.	3.8	88
28	Advancing Unmanned Aerial Capabilities for Atmospheric Research. Bulletin of the American Meteorological Society, 2019, 100, ES105-ES108.	3.3	17
29	Atmospheric observations made at Oliktok Point, Alaska, as part of the Profiling at Oliktok Point to Enhance YOPP Experiments (POPEYE) campaign. Earth System Science Data, 2019, 11, 1349-1362.	9.9	12
30	Accelerated Springtime Melt of Snow on Tundra Downwind from Northern Alaska River Systems Resulting from Niveo-aeolian Deposition Events. Arctic, 2019, 72, 245-257.	0.4	0
31	Processâ€Based Model Evaluation Using Surface Energy Budget Observations in Central Greenland. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4777-4796.	3.3	15
32	The influence of local oil exploration and regional wildfires on summer 2015 aerosol over the North Slope of Alaska. Atmospheric Chemistry and Physics, 2018, 18, 555-570.	4.9	23
33	Marine and terrestrial influences on ice nucleating particles during continuous springtime measurements in an Arctic oilfield location. Atmospheric Chemistry and Physics, 2018, 18, 18023-18042.	4.9	70
34	The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds. Atmospheric Chemistry and Physics, 2018, 18, 17047-17059.	4.9	44
35	Coordinated Unmanned Aircraft System (UAS) and Ground-Based Weather Measurements to Predict Lagrangian Coherent Structures (LCSs). Sensors, 2018, 18, 4448.	3.8	43
36	Advancing Science and Services during the 2015/16 El Niño: The NOAA El Niño Rapid Response Field Campaign. Bulletin of the American Meteorological Society, 2018, 99, 975-1001.	3.3	23

#	Article	IF	CITATIONS
37	Observed aerosol suppression of cloud ice in low-level Arctic mixed-phase clouds. Atmospheric Chemistry and Physics, 2018, 18, 13345-13361.	4.9	25
38	Clutter mitigation, multiple peaks, and high-order spectral moments in 35 GHz vertically pointing radar velocity spectra. Atmospheric Measurement Techniques, 2018, 11, 4963-4980.	3.1	19
39	A Bird's-Eye View: Development of an Operational ARM Unmanned Aerial Capability for Atmospheric Research in Arctic Alaska. Bulletin of the American Meteorological Society, 2018, 99, 1197-1212.	3.3	46
40	Atmospheric Ice Particle Shape Estimates from Polarimetric Radar Measurements and In Situ Observations. Journal of Atmospheric and Oceanic Technology, 2017, 34, 2569-2587.	1.3	26
41	The observed influence of local anthropogenic pollution on northern Alaskan cloud properties. Atmospheric Chemistry and Physics, 2017, 17, 14709-14726.	4.9	24
42	The Pilatus unmanned aircraft system for lower atmospheric research. Atmospheric Measurement Techniques, 2016, 9, 1845-1857.	3.1	28
43	Understanding Rapid Changes in Phase Partitioning between Cloud Liquid and Ice in Stratiform Mixed-Phase Clouds: An Arctic Case Study. Monthly Weather Review, 2016, 144, 4805-4826.	1.4	29
44	International Arctic Systems for Observing the Atmosphere: An International Polar Year Legacy Consortium. Bulletin of the American Meteorological Society, 2016, 97, 1033-1056.	3.3	54
45	Unmanned Platforms Monitor the Arctic Atmosphere. Eos, 2016, 97, .	0.1	10
46	Global Hawk dropsonde observations of the Arctic atmosphere obtained during the Winter Storms and Pacific Atmospheric Rivers (WISPAR) field campaign. Atmospheric Measurement Techniques, 2014, 7, 3917-3926.	3.1	18
47	The Sensitivity of Springtime Arctic Mixed-Phase Stratocumulus Clouds to Surface-Layer and Cloud-Top Inversion-Layer Moisture Sources. Journals of the Atmospheric Sciences, 2014, 71, 574-595.	1.7	72
48	The Arctic summer atmosphere: an evaluation of reanalyses using ASCOS data. Atmospheric Chemistry and Physics, 2014, 14, 2605-2624.	4.9	77
49	Near-surface meteorology during the Arctic Summer Cloud Ocean Study (ASCOS): evaluation of reanalyses and global climate models. Atmospheric Chemistry and Physics, 2014, 14, 427-445.	4.9	41
50	Evaluation of aerosolâ€cloud interaction in the GISS ModelE using ARM observations. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6383-6395.	3.3	6
51	A numerical study of aerosol influence on mixed-phase stratiform clouds through modulation of the liquid phase. Atmospheric Chemistry and Physics, 2013, 13, 1733-1749.	4.9	9
52	Implementation and Validation of Dynamical Downscaling in a Microscale Simulation of a Lake Michigan Land Breeze. , 2012, 2012, 1-16.		0
53	A Characterization of the Present-Day Arctic Atmosphere in CCSM4. Journal of Climate, 2012, 25, 2676-2695.	3.2	77
54	Resilience of persistent Arctic mixed-phase clouds. Nature Geoscience, 2012, 5, 11-17.	12.9	498

#	Article	IF	CITATIONS
55	Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during SHEBA/FIRE-ACE. Journal of Advances in Modeling Earth Systems, 2011, 3, n/a-n/a.	3.8	90
56	Using surface remote sensors to derive radiative characteristics of Mixed-Phase Clouds: an example from M-PACE. Atmospheric Chemistry and Physics, 2011, 11, 11937-11949.	4.9	11
57	lce nucleation through immersion freezing in mixed-phase stratiform clouds: Theory and numerical simulations. Atmospheric Research, 2010, 96, 315-324.	4.1	51
58	Arctic Mixed-Phase Stratiform Cloud Properties from Multiple Years of Surface-Based Measurements at Two High-Latitude Locations. Journals of the Atmospheric Sciences, 2009, 66, 2874-2887.	1.7	113
59	Intercomparison of model simulations of mixedâ€phase clouds observed during the ARM Mixedâ€Phase Arctic Cloud Experiment. I: singleâ€layer cloud. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 979-1002.	2.7	224
60	Preliminary comparison of CloudSATâ€derived microphysical quantities with groundâ€based measurements for mixedâ€phase cloud research in the Arctic. Journal of Geophysical Research, 2008, 113,	3.3	14
61	A Focus On Mixed-Phase Clouds. Bulletin of the American Meteorological Society, 2008, 89, 1549-1562.	3.3	145