Tianyong Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/940842/publications.pdf Version: 2024-02-01

		331670	345221
52	1,424	21	36
papers	citations	h-index	g-index
52	52	52	2425
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Changing expression profiles of lncRNAs, mRNAs, circRNAs and miRNAs during osteoclastogenesis. Scientific Reports, 2016, 6, 21499.	3.3	157
2	The effect of mechanical stimulation on the maturation of TDSCs-poly(L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering. Biomaterials, 2014, 35, 2760-2772.	11.4	97
3	Estrogen Deficiency–Mediated M2 Macrophage Osteoclastogenesis Contributes to M1/M2 Ratio Alteration in Ovariectomized Osteoporotic Mice. Journal of Bone and Mineral Research, 2018, 33, 899-908.	2.8	96
4	Umbilical Cord Wharton's Jelly: A New Potential Cell Source of Mesenchymal Stromal Cells for Bone Tissue Engineering. Tissue Engineering - Part A, 2009, 15, 2325-2334.	3.1	80
5	<scp>EPC</scp> â€derived exosomes promote osteoclastogenesis through Lnc <scp>RNA</scp> â€ <scp>MALAT</scp> 1. Journal of Cellular and Molecular Medicine, 2019, 23, 3843-3854.	3.6	72
6	Effects of Pulsed Electromagnetic Field Frequencies on the Osteogenic Differentiation of Human Mesenchymal Stem Cells. Orthopedics, 2012, 35, e526-31.	1.1	60
7	MicroRNA-24 inhibits osteosarcoma cell proliferation both in vitro and in vivo by targeting LPAATÎ ² . Archives of Biochemistry and Biophysics, 2013, 535, 128-135.	3.0	57
8	A composite demineralized bone matrix – Self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow. Biomaterials, 2014, 35, 5689-5699.	11.4	55
9	In Vitro Evaluation of a Fibrin Gel Antibiotic Delivery System Containing Mesenchymal Stem Cells and Vancomycin Alginate Beads for Treating Bone Infections and Facilitating Bone Formation. Tissue Engineering - Part A, 2008, 14, 1173-1182.	3.1	54
10	IL-8 Enhances Therapeutic Effects of BMSCs on Bone Regeneration via CXCR2-Mediated PI3k/Akt Signaling Pathway. Cellular Physiology and Biochemistry, 2018, 48, 361-370.	1.6	53
11	Modification of PLGA Scaffold by MSCâ€Derived Extracellular Matrix Combats Macrophage Inflammation to Initiate Bone Regeneration via TGFâ€ <i>β</i> â€Induced Protein. Advanced Healthcare Materials, 2020, 9, e2000353.	7.6	48
12	Rapid and accurate detection of RMP- and INH- resistant Mycobacterium tuberculosisin spinal tuberculosis specimens by CapitalBioâ"¢ DNA microarray: A prospective validation study. BMC Infectious Diseases, 2012, 12, 303.	2.9	41
13	Mesenchymal stem cells promote endothelial progenitor cell migration, vascularization, and bone repair in tissueâ€engineered constructs <i>via</i> activating CXCR2â€6rcâ€PKL/Vav2â€Rac1. FASEB Journal, 2018 32, 2197-2211.	8,0.5	37
14	Surgical Treatment of Thoracic Spinal Tuberculosis: A Multicenter Retrospective Study. World Neurosurgery, 2018, 110, e842-e850.	1.3	35
15	TGFβ3 recruits endogenous mesenchymal stem cells to initiate bone regeneration. Stem Cell Research and Therapy, 2017, 8, 258.	5.5	32
16	Anti-Infection Tissue Engineering Construct Treating Osteomyelitis in Rabbit Tibia. Tissue Engineering - Part A, 2013, 19, 255-263.	3.1	31
17	Cordycepin Prevents Bone Loss through Inhibiting Osteoclastogenesis by Scavenging ROS Generation. Nutrients, 2016, 8, 231.	4.1	29
18	HDAC2 regulates FoxO1 during RANKL-induced osteoclastogenesis. American Journal of Physiology - Cell Physiology, 2016, 310, C780-C787.	4.6	29

TIANYONG HOU

#	Article	IF	CITATIONS
19	Controlled Dynamization to Enhance Reconstruction Capacity of Tissue-Engineered Bone in Healing Critically Sized Bone Defects: An <i>In Vivo</i> Study in Goats. Tissue Engineering - Part A, 2010, 16, 201-212.	3.1	23
20	IGFBP3 deposited in the human umbilical cord mesenchymal stem cellâ€secreted extracellular matrix promotes bone formation. Journal of Cellular Physiology, 2018, 233, 5792-5804.	4.1	23
21	Establishment of a bilateral femoral large segmental bone defect mouse model potentially applicable to basic research in bone tissue engineering. Journal of Surgical Research, 2014, 192, 454-463.	1.6	22
22	Repeated microendoscopic discectomy for recurrent lumbar disk herniation. Clinics, 2015, 70, 120-125.	1.5	19
23	A nano-scaled and multi-layered recombinant fibronectin/cadherin chimera composite selectively concentrates osteogenesis-related cells and factors to aid bone repair. Acta Biomaterialia, 2017, 53, 470-482.	8.3	19
24	Clinical and radiological results comparison of allograft and polyetheretherketone cage for one to two-level anterior cervical discectomy and fusion. Medicine (United States), 2019, 98, e17935.	1.0	17
25	The influence of L4–S1 Dynesys® dynamic stabilization versus fusion on lumbar motion and its relationship with lumbar degeneration: a retrospective study. Journal of Orthopaedic Surgery and Research, 2017, 12, 99.	2.3	16
26	1,25(OH)D suppresses proinflammatory responses by inhibiting Th1 cell differentiation and cytokine production through the JAK/STAT pathway. American Journal of Translational Research (discontinued), 2018, 10, 2737-2746.	0.0	15
27	Endothelial Progenitor Cells Enhance the Migration and Osteoclastic Differentiation of Bone Marrow-Derived Macrophages in vitro and in a Mouse Femur Fracture Model through Talin-1. Cellular Physiology and Biochemistry, 2018, 49, 555-564.	1.6	14
28	A High-Adhesive Lysine-Cyclic RGD Peptide Designed for Selective Cell Retention Technology. Tissue Engineering - Part C: Methods, 2016, 22, 585-595.	2.1	13
29	Tissue-engineered bone treating simple bone cyst—a new strategy. Journal of Surgical Research, 2016, 200, 544-551.	1.6	12
30	Long noncoding RNA expression profiles in chondrogenic and hypertrophic differentiation of mouse mesenchymal stem cells. Functional and Integrative Genomics, 2017, 17, 739-749.	3.5	12
31	Cellular Prostheses Fabricated with Motor Neurons Seeded in Self-Assembling Peptide Promotes Partial Functional Recovery After Spinal Cord Injury in Rats. Tissue Engineering - Part A, 2012, 18, 974-985.	3.1	11
32	Bone Marrow-Derived CD44+Cells Migrate to Tissue-Engineered Constructs via SDF-1/CXCR4-JNK Pathway and Aid Bone Repair. Stem Cells International, 2019, 2019, 1-14.	2.5	11
33	Individual Tissue-Engineered Bone in Repairing Bone Defects: A 10-Year Follow-Up Study. Tissue Engineering - Part A, 2020, 26, 896-904.	3.1	11
34	Vascular Endothelial Growth Factor Release from Alginate Microspheres Under Simulated Physiological Compressive Loading and the Effect on Human Vascular Endothelial Cells. Tissue Engineering - Part A, 2011, 17, 1777-1785.	3.1	10
35	Vascular Endothelial Growth Factor and Physiological Compressive Loading Synergistically Promote Bone Formation of Tissue-Engineered Bone. Tissue Engineering - Part A, 2013, 19, 2486-2494.	3.1	10
36	Sustained release of bioactive protein from a lyophilized tissueâ€engineered construct promotes the osteogenic potential of mesenchymal stem cells. Journal of Orthopaedic Research, 2016, 34, 386-394.	2.3	10

TIANYONG HOU

#	Article	IF	CITATIONS
37	Knockdown of TNFR1 Suppresses Expression of TLR2 in the Cellular Response to Staphylococcus aureus Infection. Inflammation, 2016, 39, 798-806.	3.8	10
38	Can a posterior approach effectively heal thoracic and lumbar tuberculosis? Microbiology outcomes of the operative area. Journal of Orthopaedic Surgery and Research, 2019, 14, 24.	2.3	10
39	A Standardized and Quality-Controllable Protocol of Constructing Individual Tissue-Engineered Grafts Applicable to Treating Large Bone Defects. Tissue Engineering - Part C: Methods, 2019, 25, 137-147.	2.1	9
40	Epidemiological survey of idiopathic scoliosis and sequence alignment analysis of multiple candidate genes. International Orthopaedics, 2012, 36, 1307-1314.	1.9	8
41	Treatment effect, postoperative complications, and their reasons in juvenile thoracic and lumbar spinal tuberculosis surgery. Journal of Orthopaedic Surgery and Research, 2015, 10, 156.	2.3	8
42	Could high-concentration rifampicin kill rifampicin-resistant M. tuberculosis? Rifampicin MIC test in rifampicin-resistant isolates from patients with osteoarticular tuberculosis. Journal of Orthopaedic Surgery and Research, 2014, 9, 124.	2.3	7
43	Improved Monosegment Pedicle Instrumentation for Treatment of Thoracolumbar Incomplete Burst Fractures. BioMed Research International, 2015, 2015, 1-7.	1.9	7
44	A Retrospective Study of Thoracolumbar Fractures Treated with Fixation and Nonfusion Surgery of Intravertebral Bone Graft Assisted with Balloon Kyphoplasty. World Neurosurgery, 2017, 108, 798-806.	1.3	7
45	Pitavastatin attenuates monocyte activation in response to orthopedic implant-derived wear particles by suppressing the NF-κB signaling pathway. Molecular Medicine Reports, 2015, 12, 6932-6938.	2.4	6
46	Tricortical iliac crest allograft with anterolateral single rod screw instrumentation in the treatment of thoracic and lumbar spinal tuberculosis. Scientific Reports, 2020, 10, 13037.	3.3	6
47	Umbilical Cord Wharton's Jelly Repeated Culture System: A New Device and Method for Obtaining Abundant Mesenchymal Stem Cells for Bone Tissue Engineering. PLoS ONE, 2014, 9, e110764.	2.5	5
48	The clinical use of the enriched bone marrow obtained by selective cell retention technology in treating adolescent idiopathic scoliosis. Journal of Orthopaedic Translation, 2021, 27, 146-152.	3.9	3
49	Drug Delivery: Grapheneâ€Based MicroRNA Transfection Blocks Preosteoclast Fusion to Increase Bone Formation and Vascularization (Adv. Sci. 2/2018). Advanced Science, 2018, 5, 1870009.	11.2	2
50	Multiple parameters for evaluating posterior longitudinal ligaments in thoracolumbar burst fractures. Der Orthopade, 2019, 48, 420-425.	1.6	2
51	Comparison of Individual Tissue-Engineered Bones and Allogeneic Bone in Treating Bone Defects: A Long-Term Follow-Up Study. Cell Transplantation, 2020, 29, 096368972094072.	2.5	2
52	Transforaminal debridement with a posterior-only approach involving placement of an interbody bone graft combined with diseased vertebral fixation for the treatment of thoracic and lumbar tuberculosis. Medicine (United States), 2020, 99, e20359.	1.0	1