
Shenggui Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9408009/publications.pdf Version: 2024-02-01

SHENCOULEU

#	Article	IF	CITATIONS
1	Polymerâ€based microfluidic devices: A comprehensive review on preparation and applications. Polymer Engineering and Science, 2022, 62, 3-24.	3.1	26
2	Subwavelength spinning of particles in vector cosine-Gaussian field with radial polarization. Optics Communications, 2022, 508, 127829.	2.1	3
3	Passively mode-locked Er-doped fiber laser based on a ferromagnetic insulator Cr ₂ Si ₂ Te ₆ as a saturable absorber. Applied Optics, 2022, 61, 898.	1.8	12
4	Ultrafast photonics applications of emerging 2D-Xenes beyond graphene. Nanophotonics, 2022, 11, 1261-1284.	6.0	65
5	Generation of bright-dark soliton pairs based on a ferromagnetic insulator Cr ₂ Si ₂ Te ₆ as a modulator in an Er-doped fiber laser. Applied Optics, 2022, 61, 3254.	1.8	1
6	Evolving electromagnetic chirality of a focused field from the Poincaré sphere perspective. Optik, 2022, 262, 169278.	2.9	1
7	Multi-element two-dimensional compounds Pb3Sn4FeSb2S14 as saturable absorber to demonstrate large-energy mode-locked pulse generations. Optik, 2022, , 169411.	2.9	0
8	Demonstration of passively Q-switched and mode-locked operations through dispersion control in Er-doped fiber lasers with a cylindrite-based saturable absorber. Journal of Luminescence, 2022, 250, 119064.	3.1	9
9	Demonstration of high-stable self-mode-locking pulses based on self-focusing in fiber lasers. Infrared Physics and Technology, 2022, 125, 104244.	2.9	4
10	Mode-locked fiber laser based on Pb3Sn4FeSb2S14 saturable absorber. Optical Fiber Technology, 2022, 72, 102951.	2.7	1
11	Hybrid polarization induced transverse energy flow. Optics Communications, 2021, 485, 126704.	2.1	8
12	Starting monomer of graphdiyne–hexakis[(trimethylsilyl)ethynyl]benzene: a superior nonlinear absorption material. Journal of Materials Science, 2021, 56, 3653-3662.	3.7	8
13	Review of passive polarimetric dehazing methods. Optical Engineering, 2021, 60, .	1.0	6
14	Ultrathin 2D Nonlayered Tellurene Nanosheets as Saturable Absorber for Picosecond Pulse Generation in All-Fiber Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-6.	2.9	18
15	Superconductivity in ThMo2Si2C with Mo2C square net. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	4
16	Passively Q-switched modulation based on antimonene in erbium-doped fiber laser with a long term stability. Optical Materials, 2021, 118, 111256.	3.6	17
17	Q-switched dissipative soliton resonance operation in GeTe based fiber laser. Infrared Physics and Technology, 2021, 116, 103806.	2.9	6
18	Large-energy mode-locked Er-doped fiber laser based Cr2Si2Te6 as a modulator. Infrared Physics and Technology, 2021, 119, 103941.	2.9	7

Shenggui Fu

#	Article	IF	CITATIONS
19	Broadband saturated absorption properties of bismuthene nanosheets. RSC Advances, 2021, 11, 35046-35050.	3.6	1
20	Q-Switched Erbium-doped Fiber Laser Based on Silicon Nanosheets as Saturable Absorber. Optik, 2020, 202, 163692.	2.9	23
21	Recent Progress of Fiber-Optic Sensors for the Structural Health Monitoring of Civil Infrastructure. Sensors, 2020, 20, 4517.	3.8	87
22	Tin monoselenide based saturable absorbers for the generation of ultrashort pulses. Infrared Physics and Technology, 2020, 108, 103349.	2.9	4
23	Metallic particle manipulation with adjustable trapping range through customized field. Optics Communications, 2020, 473, 126045.	2.1	7
24	Tellurene-based saturable absorber to demonstrate large-energy dissipative soliton and noise-like pulse generations. Nanophotonics, 2020, 9, 2783-2795.	6.0	149
25	2D graphdiyne: an excellent ultraviolet nonlinear absorption material. Nanoscale, 2020, 12, 6243-6249.	5.6	40
26	Passively Q-switched and mode-locked erbium-doped fiber lasers based on tellurene nanosheets as saturable absorber. Optics Express, 2020, 28, 14729.	3.4	44
27	Graphene-based ultrasensitive optical microfluidic sensor for the real-time and label-free monitoring of simulated arterial blood flow. Optics Express, 2020, 28, 16594.	3.4	15
28	Creation of complex nano-interferometric field structures. Optics Letters, 2020, 45, 37.	3.3	16
29	Palladium selenide as a broadband saturable absorber for ultra-fast photonics. Nanophotonics, 2020, 9, 2557-2567.	6.0	91
30	Polarimetric imaging method for target enhancement in haze based on polarimetric retrieval. Journal of Modern Optics, 2019, 66, 1235-1243.	1.3	2
31	Broadband nonlinear absorption properties of two-dimensional hexagonal tellurene nanosheets. Nanoscale, 2019, 11, 17058-17064.	5.6	42
32	Single- and Dual-Wavelength Passively Mode-Locked Erbium-Doped Fiber Laser Based on Antimonene Saturable Absorber. IEEE Photonics Journal, 2019, 11, 1-11.	2.0	17
33	Passively Q-switched Nd-doped fiber laser based on PbS/CdS core/shell quantum dots as a saturable absorber. Applied Optics, 2019, 58, 3036.	1.8	8
34	Ferromagnetic insulator Cr2Ge2Te6 as a modulator for generating near-infrared bright-dark soliton pairs. Applied Optics, 2019, 58, 9217.	1.8	23
35	Fully controlled photonic spin in highly confined optical field. Optics Express, 2019, 27, 33621.	3.4	16
36	Pancharatnam–Berry phase shaping for control of the transverse enhancement of focusing. Optics Letters, 2019, 44, 427.	3.3	18

Shenggui Fu

#	Article	IF	CITATIONS
37	Large-energy mode-locked Er-doped fiber laser based on indium selenide as a modulator. Optical Materials Express, 2019, 9, 2662.	3.0	29
38	Passively erbium-doped mode-locked fiber laser based on SnSe <inf>2</inf> nanosheets. , 2018, , .		0
39	Redistributing the energy flow of a tightly focused radially polarized optical field by designing phase masks. Optics Express, 2018, 26, 23935.	3.4	27
40	Focus engineering based on analytical formulae for tightly focused polarized beams with arbitrary geometric configurations of linear polarization. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2017, 34, 1384.	1.5	18