List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/940794/publications.pdf Version: 2024-02-01

WEIMINLIII

#	Article	IF	CITATIONS
1	Room-temperature ionic liquids: a novel versatile lubricant. Chemical Communications, 2001, , 2244-2245.	4.1	851
2	Tribological Performance of Room-Temperature Ionic Liquids as Lubricant. Tribology Letters, 2002, 13, 81-85.	2.6	297
3	TiO ₂ Nanotubes with Tunable Morphology, Diameter, and Length: Synthesis and Photo-Electrical/Catalytic Performance. Chemistry of Materials, 2009, 21, 1198-1206.	6.7	238
4	Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications. Nanoscale, 2017, 9, 3338-3366.	5.6	232
5	Stable superhydrophobic coatings from thiol-ligand nanocrystals and their application in oil/water separation. Journal of Materials Chemistry, 2012, 22, 9774.	6.7	231
6	Polyethylene glycol functionalized dicationic ionic liquids with alkyl or polyfluoroalkyl substituents as high temperature lubricants. Journal of Materials Chemistry, 2006, 16, 1529.	6.7	225
7	Ionic liquid lubricants: when chemistry meets tribology. Chemical Society Reviews, 2020, 49, 7753-7818.	38.1	220
8	Extreme wettability and tunable adhesion: biomimicking beyond nature?. Soft Matter, 2012, 8, 2070-2086.	2.7	217
9	Biomimetic superoleophobic surfaces: focusing on their fabrication and applications. Journal of Materials Chemistry A, 2015, 3, 1811-1827.	10.3	214
10	Tribological behavior and lubricating mechanism of Cu nanoparticles in oil. Tribology Letters, 2000, 8, 213-218.	2.6	209
11	A Robust Epoxy Resins @ Stearic Acid-Mg(OH) ₂ Micronanosheet Superhydrophobic Omnipotent Protective Coating for Real-Life Applications. ACS Applied Materials & Interfaces, 2016, 8, 16511-16520.	8.0	154
12	Remote Control over Underwater Dynamic Attachment/Detachment and Locomotion. Advanced Materials, 2018, 30, e1801595.	21.0	137
13	Tribological Properties of CaCO3 Nanoparticles as an Additive in Lithium Grease. Tribology Letters, 2011, 41, 113-119.	2.6	133
14	Biomimetic Multi-Functional Superamphiphobic FOTS-TiO ₂ Particles beyond Lotus Leaf. ACS Applied Materials & Interfaces, 2016, 8, 27188-27198.	8.0	131
15	Electrostatic Selfâ€Assembly of Au Nanoparticles onto Thermosensitive Magnetic Coreâ€&hell Microgels for Thermally Tunable and Magnetically Recyclable Catalysis. Small, 2015, 11, 2807-2816.	10.0	113
16	Ultraviolet Light-Induced Surface-Initiated Atom-Transfer Radical Polymerization. ACS Macro Letters, 2013, 2, 592-596.	4.8	103
17	High Strength Astringent Hydrogels Using Protein as the Building Block for Physically Cross-linked Multi-Network. ACS Applied Materials & Interfaces, 2018, 10, 7593-7601.	8.0	103
18	Icephobic/anti-icing properties of superhydrophobic surfaces. Advances in Colloid and Interface Science, 2022, 304, 102658.	14.7	103

#	Article	IF	CITATIONS
19	Ionic liquids from amino acids: fully green fluid lubricants for various surface contacts. RSC Advances, 2014, 4, 19396.	3.6	102
20	Nanoporous Substrateâ€Infiltrated Hydrogels: a Bioinspired Regenerable Surface for High Load Bearing and Tunable Friction. Advanced Functional Materials, 2015, 25, 7366-7374.	14.9	87
21	Synthesis of dicationic symmetrical and asymmetrical ionic liquids and their tribological properties as ultrathin films. Tribology Letters, 2007, 25, 197-205.	2.6	86
22	Alkyl Imidazolium Ionic Liquids as Friction Reduction and Anti-Wear Additive in Polyurea Grease for Steel/Steel Contacts. Tribology Letters, 2010, 40, 215-224.	2.6	85
23	Lubricating a bright future: Lubrication contribution to energy saving and low carbon emission. Science China Technological Sciences, 2013, 56, 2888-2913.	4.0	84
24	Paper-based triboelectric nanogenerators and their application in self-powered anticorrosion and antifouling. Journal of Materials Chemistry A, 2016, 4, 18022-18030.	10.3	84
25	Continuous Surface Polymerization via Fe(II)â€Mediated Redox Reaction for Thick Hydrogel Coatings on Versatile Substrates. Advanced Materials, 2018, 30, e1803371.	21.0	84
26	Outmatching superhydrophobicity: bio-inspired re-entrant curvature for mighty superamphiphobicity in air. Journal of Materials Chemistry A, 2017, 5, 14480-14507.	10.3	75
27	Functional ionic gels formed by supramolecular assembly of a novel low molecular weight anticorrosive/antioxidative gelator. Journal of Materials Chemistry, 2011, 21, 13399.	6.7	71
28	Friction and Wear Studies of Octadecyltrichlorosilane SAM on Silicon. Tribology Letters, 2002, 13, 233-239.	2.6	68
29	Candle soot as a supercapacitor electrode material. RSC Advances, 2014, 4, 2586-2589.	3.6	65
30	The Tribochemical Study of Some N-Containing Heterocyclic Compounds as Lubricating Oil Additives. Tribology Letters, 2002, 13, 87-93.	2.6	63
31	Polyelectrolyteâ€grafted carbon nanotubes: Synthesis, reversible phaseâ€ŧransition behavior, and tribological properties as lubricant additives. Journal of Polymer Science Part A, 2008, 46, 7225-7237.	2.3	63
32	DOSS [–] Based QAILs: As Both Neat Lubricants and Lubricant Additives with Excellent Tribological Properties and Good Detergency. Industrial & Engineering Chemistry Research, 2014, 53, 17952-17960.	3.7	63
33	A simple route to transform normal hydrophilic cloth into a superhydrophobic–superhydrophilic hybrid surface. Journal of Materials Chemistry A, 2014, 2, 7845-7852.	10.3	63
34	Mechanical synthesis of chemically bonded phosphorus–graphene hybrid as high-temperature lubricating oil additive. RSC Advances, 2018, 8, 4595-4603.	3.6	61
35	Biomimicking lubrication superior to fish skin using responsive hydrogels. NPG Asia Materials, 2014, 6, e136-e136.	7.9	60
36	Erosion Mechanism of MoS ₂ -Based Films Exposed to Atomic Oxygen Environments. ACS Applied Materials & Interfaces, 2015, 7, 12943-12950.	8.0	58

#	Article	IF	CITATIONS
37	Dramatically improved friction reduction and wear resistance by in situ formed ionic liquids. RSC Advances, 2012, 2, 6824.	3.6	56
38	Dual superlyophobic surfaces with superhydrophobicity and underwater superoleophobicity. Journal of Materials Chemistry A, 2018, 6, 11682-11687.	10.3	56
39	Graphene oxide–iron complex: synthesis, characterization and visible-light-driven photocatalysis. Journal of Materials Chemistry A, 2013, 1, 644-650.	10.3	55
40	Supramolecular ionogel lubricants with imidazolium-based ionic liquids bearing the urea group as gelator. Journal of Colloid and Interface Science, 2017, 487, 130-140.	9.4	55
41	Surface Modification of Diamondâ€Like Carbon Film with Polymer Brushes Using a Bioâ€Inspired Catechol Anchor for Excellent Biological Lubrication. Advanced Materials Interfaces, 2014, 1, 1400035.	3.7	54
42	Air Cushion Convection Inhibiting Icing of Self-Cleaning Surfaces. ACS Applied Materials & Interfaces, 2016, 8, 29169-29178.	8.0	53
43	Oil-soluble ionic liquids as antiwear and extreme pressure additives in poly-α-olefin for steel/steel contacts. Friction, 2019, 7, 18-31.	6.4	53
44	MoS ₂ /WS ₂ Quantum Dots as Highâ€Performance Lubricant Additive in Polyalkylene Glycol for Steel/Steel Contact at Elevated Temperature. Advanced Materials Interfaces, 2018, 5, 1700859.	3.7	50
45	Structure characterization and conductive performance of polypyrrol-molybdenum disulfide intercalation materials. Polymer Composites, 2004, 25, 111-117.	4.6	49
46	Superhydrophobic sand: a hope for desert water storage and transportation projects. Journal of Materials Chemistry A, 2017, 5, 6416-6423.	10.3	48
47	Surface Modification of MoS ₂ Nanosheets as Effective Lubricant Additives for Reducing Friction and Wear in Poly-α-olefin. Industrial & Engineering Chemistry Research, 2018, 57, 8105-8114.	3.7	48
48	Effect of Electric Potential and Chain Length on Tribological Performances of Ionic Liquids as Additives for Aqueous Systems and Molecular Dynamics Simulations. ACS Applied Materials & Interfaces, 2020, 12, 39910-39919.	8.0	48
49	Gecko's Feet-Inspired Self-Peeling Switchable Dry/Wet Adhesive. Chemistry of Materials, 2021, 33, 2785-2795.	6.7	48
50	Tribological properties of nanoâ€calcium borate as lithium grease additive. Lubrication Science, 2014, 26, 43-53.	2.1	46
51	pH-responsive smart fabrics with controllable wettability in different surroundings. RSC Advances, 2014, 4, 14684.	3.6	45
52	lbuprofen-Based Ionic Liquids as Additives for Enhancing the Lubricity and Antiwear of Water–Ethylene Glycol Liquid. Tribology Letters, 2017, 65, 1.	2.6	45
53	Controllably Doping Nitrogen into 1T/2H MoS ₂ Heterostructure Nanosheets for Enhanced Supercapacitive and Electrocatalytic Performance by Low-Power N ₂ Plasma. ACS Applied Materials & Interfaces, 2021, 13, 44427-44439.	8.0	45
54	Gel phase originating from molecular quasi-crystallization and nanofiber growth of sodium laurate–water system. Soft Matter, 2008, 4, 1639.	2.7	44

#	Article	IF	CITATIONS
55	Candle Soot as Particular Lubricant Additives. Tribology Letters, 2014, 53, 521-531.	2.6	44
56	An investigation of the friction and wear behaviors of polyphenylene sulfide filled with solid lubricants. Polymer Engineering and Science, 2000, 40, 1825-1832.	3.1	41
57	Lithium-Based Ionic Liquids: In Situ-Formed Lubricant Additive Only by Blending. Tribology Letters, 2013, 49, 127-133.	2.6	41
58	Supramolecular Gel Lubricants Based on Amino Acid Derivative Gelators. Tribology Letters, 2016, 61, 1.	2.6	41
59	Tribochemistry and the development of AW and EP oil additives — a review. Lubrication Science, 1994, 7, 81-92.	2.1	40
60	Fabrication of Asymmetric Tubular Hydrogels through Polymerization-Assisted Welding for Thermal Flow Actuated Artificial Muscles. Chemistry of Materials, 2019, 31, 4469-4478.	6.7	39
61	Janus Membranes with Asymmetric Wettability Applied in Oil/Water Emulsion Separations. Advanced Sustainable Systems, 2021, 5, 2000253.	5.3	39
62	Design of a Venation-like Patterned Surface with Hybrid Wettability for Highly Efficient Fog Harvesting. Nano Letters, 2022, 22, 3104-3111.	9.1	39
63	The tribological behavior of micrometer and nanometer TiO2 particle-filled poly(phthalazine ether) Tj ETQq1 1 C	.784314 rg 2.6	gBT_/Overlock
64	Why so strong for the lotus leaf?. Applied Physics Letters, 2008, 93, .	3.3	38
65	Fabrication of PTFE/Nomex fabric/phenolic composites using a layer-by-layer self-assembly method for tribology field application. Friction, 2020, 8, 335-342.	6.4	38
66	Soft-nanocomposite lubricants of supramolecular gel with carbon nanotubes. Journal of Materials Chemistry A, 2019, 7, 7654-7663.	10.3	37
67	Photo-regulated stick-slip switch of water droplet mobility. Soft Matter, 2011, 7, 3331.	2.7	36
68	Tribological Behavior of Protic Ionic Liquids with Dodecylamine Salts of Dialkyldithiocarbamate as Additives in Lithium Complex Grease. Tribology Letters, 2012, 48, 133-144.	2.6	36
69	A Nickel-Alloy-Based High-Temperature Self-Lubricating Composite with Simultaneously Superior Lubricity and High Strength. Tribology Letters, 2013, 49, 573-577.	2.6	36
70	Physicochemistry aspects on frictional interfaces. Friction, 2017, 5, 361-382.	6.4	36
71	Tribological Property of Ni3Al Matrix Composites with Addition of BaMoO4. Tribology Letters, 2011, 43, 55-63.	2.6	34
72	Microstructure Evolution and Enhanced Tribological Properties of Cu-Doped WS2 Films. Tribology Letters, 2014, 55, 1-13.	2.6	34

#	Article	IF	CITATIONS
73	Taskâ€5pecific Oilâ€Miscible Ionic Liquids Lubricate Steel/Light Metal Alloy: A Tribochemistry Study. Advanced Materials Interfaces, 2018, 5, 1800791.	3.7	34
74	Influence of lubricant filling on the dry sliding wear behaviors of hybrid PTFE/Nomex fabric composite. Journal of Materials Science, 2014, 49, 3716-3724.	3.7	33
75	Anisotropic wetting properties on various shape of parallel grooved microstructure. Journal of Colloid and Interface Science, 2015, 453, 142-150.	9.4	33
76	Computational investigation of the lubrication behaviors of dioxides and disulfides of molybdenum and tungsten in vacuum. Friction, 2017, 5, 23-31.	6.4	33
77	Thermo-responsive hollow silica microgels with controlled drug release properties. Colloids and Surfaces B: Biointerfaces, 2013, 111, 7-14.	5.0	32
78	A combined structural and wettability gradient surface for directional droplet transport and efficient fog collection. Journal of Colloid and Interface Science, 2021, 604, 526-536.	9.4	32
79	NiAl Matrix High-Temperature Self-Lubricating Composite. Tribology Letters, 2011, 41, 535-540.	2.6	31
80	Effect of Fluoride Content on Friction and Wear Performance of Ni3Al Matrix High-Temperature Self-Lubricating Composites. Tribology Letters, 2011, 43, 341-349.	2.6	31
81	Biobased Green Lubricants: Physicochemical, Tribological and Toxicological Properties of Fatty Acid Ionic Liquids. Tribology Transactions, 2018, 61, 195-206.	2.0	31
82	Fog collection behavior of bionic surface and large fog collector: A review. Advances in Colloid and Interface Science, 2022, 300, 102583.	14.7	31
83	Investigating the tribological performance of nanosized MoS ₂ on graphene dispersion in perfluoropolyether under high vacuum. RSC Advances, 2016, 6, 98606-98610.	3.6	30
84	Highlighting the Effect of Interfacial Interaction on Tribological Properties of Supramolecular Gel Lubricants. Advanced Materials Interfaces, 2016, 3, 1500489.	3.7	30
85	Organic Media Superwettability: On-Demand Liquid Separation by Controlling Surface Chemistry. ACS Applied Materials & Interfaces, 2018, 10, 37634-37642.	8.0	30
86	The Tribological Behavior of a Ti-46Al-2Cr-2Nb Alloy Under Liquid Paraffine Lubrication. Tribology Letters, 2012, 46, 233-241.	2.6	29
87	A novel way to prepare ultra-thin polymer films through surface radical chain-transfer reaction. Chemical Communications, 2001, , 2446-2447.	4.1	28
88	Superlow friction of titanium/silicon codoped hydrogenated amorphous carbon film in the ambient air. Journal of Applied Physics, 2010, 108, .	2.5	28
89	Facile Fabrication of Superhydrophobic and Underwater Superoleophobic Coatings. ACS Applied Nano Materials, 2018, 1, 4894-4899.	5.0	28
90	Electrolyte-modulated electrochemistry and electrocatalysis on ferrocene-terminated polyelectrolyte brushes. Journal of Materials Chemistry, 2009, 19, 8129.	6.7	27

#	Article	IF	CITATIONS
91	Lithium-based ionic liquids as novel lubricant additives for multiply alkylated cyclopentanes (MACs). Friction, 2013, 1, 222-231.	6.4	27
92	WS2-filled hybrid PTFE/Nomex fabric composites with improved antiwear property. Journal of Materials Science, 2015, 50, 1065-1070.	3.7	27
93	Functionalization of multiwalled carbon nanotube via surface reversible addition fragmentation chain transfer polymerization and as lubricant additives. Journal of Polymer Science Part A, 2008, 46, 3014-3023.	2.3	26
94	Ni3Al Matrix Composite with Lubricious Tungstate at High Temperatures. Tribology Letters, 2012, 45, 251-255.	2.6	26
95	Dry-Sliding Tribological Properties of TiAl/Ti2AlC Composites. Tribology Letters, 2014, 53, 457-467.	2.6	26
96	pH-Manipulated Underwater–Oil Adhesion Wettability Behavior on the Micro/Nanoscale Semicircular Structure and Related Thermodynamic Analysis. ACS Applied Materials & Interfaces, 2015, 7, 10641-10649.	8.0	26
97	Preparation and characterization of polystyrene grafted nano-sized silica. Materials Research Innovations, 2003, 7, 105-109.	2.3	25
98	Characterization and Tribological Investigation of Sol–Gel Titania and Doped Titania Thin Films. Journal of the American Ceramic Society, 2002, 85, 1770-1776.	3.8	25
99	Preparation and characterization of gold/poly(vinyl alcohol)/MoS ₂ intercalation nanocomposite. Journal of Materials Science: Materials in Electronics, 2004, 15, 435-438.	2.2	25
100	Tribological Study of Boron-Containing Soybean Lecithin as Environmentally Friendly Lubricant Additive in Synthetic Base Fluids. Tribology Letters, 2012, 47, 381-388.	2.6	25
101	Photothermally actuated interfacial hydration for fast friction switch on hydrophilic polymer brush modified PDMS sheet incorporated with Fe ₃ O ₄ nanoparticles. Chemical Communications, 2016, 52, 3681-3683.	4.1	25
102	Al-Doped Ga-Based Liquid Metal: Modification Strategy and Controllable High-Temperature Lubricity through Frictional Interface Regulation. Langmuir, 2019, 35, 6905-6915.	3.5	25
103	Effects of Ti and Cu on the Microstructure Evolution of AlCoCrFeNi High-Entropy Alloy During Heat Treatment. Acta Metallurgica Sinica (English Letters), 2020, 33, 1077-1090.	2.9	25
104	Bioinspired Edible Lubricant-Infused Surface with Liquid Residue Reduction Properties. Research, 2019, 2019, 1649427.	5.7	25
105	Polymer brush stabilized amorphous MnO2 on graphene oxide sheets as novel electrode materials for high performance supercapacitors. Journal of Materials Chemistry A, 2013, 1, 8587.	10.3	24
106	Tribological behavior of WS ₂ -based solid/liquid lubricating systems dominated by the surface properties of WS ₂ crystallographic planes. RSC Advances, 2015, 5, 64892-64901.	3.6	24
107	Physicochemical and tribological properties of gemini-type halogen-free dicationic ionic liquids. Friction, 2021, 9, 344-355.	6.4	24
108	MoS ₂ Lubricating Film Meets Supramolecular Gel: A Novel Composite Lubricating System for Space Applications. ACS Applied Materials & amp; Interfaces, 2021, 13, 58036-58047.	8.0	24

#	Article	IF	CITATIONS
109	In situ preparation of anti-corrosion ionic liquids as the lubricant additives in multiply-alkylated cyclopentanes. RSC Advances, 2013, 3, 21715.	3.6	23
110	Temperatureâ€driven wear behavior of Si ₃ N ₄ â€based ceramic reinforced by in situ formed TiC _{0.3} N _{0.7} particles. Journal of the American Ceramic Society, 2019, 102, 4333-4343.	3.8	23
111	A robust surface with superhydrophobicity and underwater superoleophobicity for on-demand oil/water separation. Nanoscale, 2021, 13, 15334-15342.	5.6	23
112	Surface-initiated atom transfer radical polymerization(ATRP) of styrene from silica nanoparticles under UV irradiation. Polymer International, 2004, 53, 127-130.	3.1	22
113	External-field-induced directional droplet transport: A review. Advances in Colloid and Interface Science, 2021, 295, 102502.	14.7	22
114	Durable mixed edible wax coating with stretching superhydrophobicity. Journal of Materials Chemistry A, 2021, 9, 1495-1499.	10.3	21
115	A NOVEL SYNTHESIS OF HEXASUBSTITUTED CYCLOTRIPHOSPHAZENES. Synthetic Communications, 2002, 32, 203-209.	2.1	20
116	Characterization and Investigation of the Tribological Properties of Sol?Gel Zirconia Thin Films. Journal of the American Ceramic Society, 2002, 85, 2367-2369.	3.8	20
117	Investigation of Electrical Contact Resistance of Ag Nanoparticles as Additives Added to PEG 300. Tribology Transactions, 2009, 52, 157-164.	2.0	20
118	Microstructure, Mechanical Properties and Dry Sliding Wear Behavior of Cu-Al2O3-Graphite Solid-Lubricating Coatings Deposited by Low-Pressure Cold Spraying. Journal of Thermal Spray Technology, 2018, 27, 1652-1663.	3.1	20
119	An all superantiwetting surface in water–oil–air systems. Journal of Materials Chemistry A, 2019, 7, 6957-6962.	10.3	20
120	Tribological properties of micron silicon carbide filled poly(ether ether ketone). Journal of Applied Polymer Science, 1999, 74, 2611-2615.	2.6	19
121	Dry-sliding Tribological Properties of Nano-Eutectic Fe83B17 Alloy. Tribology Letters, 2009, 34, 185-191.	2.6	19
122	Growth and characteristics of self-assembled MoS2/Mo-S-C nanoperiod multilayers for enhanced tribological performance. Scientific Reports, 2016, 6, 25378.	3.3	19
123	Fluorinated Candle Soot as the Lubricant Additive of Perfluoropolyether. Tribology Letters, 2017, 65, 1.	2.6	19
124	Preparation of High-Temperature Lubricants by Blending Castor Oil with Lithium Bis(trifluoromethylsulfonyl)imide. Tribology Letters, 2017, 65, 1.	2.6	19
125	Sundewâ€Inspired Simultaneous Actuation and Adhesion/Friction Control for Reversibly Capturing Objects Underwater. Advanced Materials Technologies, 2019, 4, 1800467	5.8	19
126	Adhesion behaviors on four special wettable surfaces: natural sources, mechanisms, fabrications and applications. Soft Matter, 2021, 17, 4895-4928.	2.7	19

#	Article	IF	CITATIONS
127	Tribological properties of P- and N-containing organic compounds as potential extreme-pressure and antiwear additives. Lubrication Science, 2003, 15, 173-183.	2.1	18
128	Sliding wear behaviors of Nomex fabric/phenolic composite under dry and water-bathed sliding conditions. Friction, 2014, 2, 264-271.	6.4	18
129	An Investigation on the Friction and Wear Properties of Perfluorooctane Sulfonate Ionic Liquids. Tribology Letters, 2016, 63, 1.	2.6	18
130	Physicochemical and Tribological Performance of Bi omponent Supramolecular Gel Lubricants. Advanced Materials Interfaces, 2019, 6, 1801391.	3.7	18
131	Preparation ofCombâ€likeStyrene Grafted Silica Nanoparticles. Journal of Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 1001-1010.	2.2	17
132	Tribological behavior of micrometer- and nanometer-Al2O3-particle-filled poly(phthalazine ether) Tj ETQqO 0 0 rgE Science, 2005, 95, 993-1001.	3T /Overlo 2.6	ck 10 Tf 50 5 17
133	Tribological Behavior of Ti3AlC2 Against SiC at Ambient and Elevated Temperatures. Tribology Letters, 2013, 50, 323-330.	2.6	17
134	Dependence of Friction and Wear on the Microstructures of WS ₂ Films under a Simulated Space Environment. ACS Applied Materials & Interfaces, 2020, 12, 56632-56641.	8.0	17
135	Metal–Organic Frameworksâ€Based Fabryâ^'Pérot Cavity Encapsulated TiO ₂ Nanoparticles for Selective Chemical Sensing. Advanced Functional Materials, 2022, 32, 2109541.	14.9	17
136	Graphene Oxide-Grafted Hybrid-Fabric Composites with Simultaneously Improved Mechanical and Tribological Properties. Tribology Letters, 2018, 66, 1.	2.6	16
137	Self-Constraint Gel Lubricants with High Phase Transition Temperature. ACS Sustainable Chemistry and Engineering, 2018, 6, 15801-15810.	6.7	16
138	Mo–S–Ti–C Nanocomposite Films for Solid-State Lubrication. ACS Applied Nano Materials, 2019, 2, 1302-1312.	5.0	16
139	Is superhydrophobicity equal to underwater superoleophilicity? Hydrophilic wetting defects on a superhydrophobic matrix with switchable superdewetting in both air and water. Journal of Materials Chemistry A, 2021, 9, 1471-1479.	10.3	16
140	Study on the structure of PbS nanoparticles coated with dialkyldithiophosphate. Journal of Materials Research, 1999, 14, 2147-2151.	2.6	15
141	Hydrophobization of epoxy nanocomposite surface with 1H,1H,2H,2H-perfluorooctyltrichlorosilane for superhydrophobic properties. Open Physics, 2012, 10, .	1.7	15
142	Tribological Behaviors of Hybrid PTFE/Nomex Fabric/Phenolic Composite under Dry and Water-Bathed Sliding Conditions. Tribology Transactions, 2014, 57, 1116-1121.	2.0	15
143	Effect of Counterface on the Tribological Behavior of Ti3AlC2 at Ambient. Tribology Letters, 2014, 53, 311-317.	2.6	15
144	Tribological properties of naphthyl phenyl diphosphates as antiwear additive in polyalkylene glycol and polyurea grease for steel/steel contacts at elevated temperature. RSC Advances, 2014, 4, 6074.	3.6	15

#	Article	IF	CITATIONS
145	Combined effects of interface modification and micro-filler reinforcements on the thermal and tribological performances of fabric composites. Friction, 2021, 9, 1110-1126.	6.4	15
146	Concealed Wireless Warning Sensor Based on Triboelectrification and Human-Plant Interactive Induction. Research, 2021, 2021, 9870936.	5.7	15
147	THE RESEARCH AND APPLICATION OF COLLOID AS LUBRICANTS. Journal of Dispersion Science and Technology, 2000, 21, 469-490.	2.4	14
148	Effect of radiation on the friction-wear properties of polyetherketone with a cardo group. Journal of Applied Polymer Science, 2001, 82, 962-967.	2.6	14
149	Electrochemical Characterization of the Solution Accessibility of CaTiO ₃ Microstructures and Improved Biomineralization. Journal of Physical Chemistry C, 2008, 112, 16123-16129.	3.1	14
150	Stable Biomimetic Super-Hydrophobic Copper Surface Fabricated by a Simple Wet-Chemical Method. Journal of Dispersion Science and Technology, 2010, 31, 488-491.	2.4	14
151	Superoleophobicity under vacuum. Applied Physics Letters, 2011, 98, 194102.	3.3	14
152	Significant advantages of low-oxygen graphene nanosheets. Journal of Materials Chemistry A, 2015, 3, 9738-9744.	10.3	14
153	Growth of Mo ₂ C nanoparticles on graphene as lubricant filler for high tribological performances of fabric self-lubricating liner composites. RSC Advances, 2016, 6, 110070-110076.	3.6	14
154	Tribological properties of SiO2 nanoparticle filled-phthalazine ether sulfone/phthalazine ether ketone (50/50 mol %) copolymer composites. Journal of Applied Polymer Science, 2002, 85, 2136-2144.	2.6	13
155	High Temperature Wear Behaviors of TiAl–TiB2 Composites. Tribology Letters, 2017, 65, 1.	2.6	13
156	MoS ₂ Nanocomposite Films with High Irradiation Tolerance and Self-Adaptive Lubrication. ACS Applied Materials & Interfaces, 2021, 13, 20435-20447.	8.0	13
157	Green plantâ€based triboelectricity system for green energy harvesting and contact warning. EcoMat, 2021, 3, e12145.	11.9	13
158	Preparation of silane-terminated polystyrene and polymethylmethacrylate self-assembled films on silicon wafer. Journal of Applied Polymer Science, 2004, 92, 1695-1701.	2.6	12
159	Formation mechanism of robust silver nanoparticle film with superhydrophobicity. Applied Physics Letters, 2010, 97, 243701.	3.3	12
160	Effects of bias voltage on structure and properties of TiAlâ€doped a :H films prepared by magnetron sputtering. Surface and Interface Analysis, 2011, 43, 677-682.	1.8	12
161	A study of P-N compound as multifunctional lubricant additive. Lubrication Science, 2011, 23, 363-373.	2.1	12
162	Preparation of superior lubricious amorphous carbon films co-doped by silicon and aluminum. Journal of Applied Physics, 2011, 110, .	2.5	12

#	Article	IF	CITATIONS
163	Promoting Lubricity and Antifouling Properties by Supramolecular-Recognition-Based Surface Grafting. Langmuir, 2018, 34, 13116-13122.	3.5	12
164	Investigation of tribological characteristics of nickel alloy-based solid-lubricating composites at elevated temperatures under vacuum. Friction, 2021, 9, 990-1001.	6.4	12
165	STUDY OF LYOTROPIC LIQUID CRYSTAL IN LUBRICATION ON ALUMINUM ALLOY SURFACES. Journal of Dispersion Science and Technology, 1999, 20, 1025-1030.	2.4	11
166	Action of transfer film in improving friction and wear behaviors of iron- and copper-filled poly(ether) Tj ETQq0 0 () rgBT /Ov 2.6	erlock 10 Tf 5
167	Preparation and tribological investigation of thin silicone films. Journal of Materials Research, 2002, 17, 2357-2362.	2.6	11
168	The tribochemical performance of nano/micrometre borate modified by an N-containing compound as an oil additive. Lubrication Science, 2003, 15, 369-379.	2.1	11
169	Tribological behavior of Kevlar fabric composites filled with nanoparticles. Journal of Applied Polymer Science, 2009, 111, 2419-2425.	2.6	11
170	Influence of methane flow on the microstructure and properties of TiAlâ€doped aâ€C:H films deposited by middle frequency reactive magnetron sputtering. Surface and Interface Analysis, 2009, 41, 924-930.	1.8	11
171	Effect of Normal Loads on Tribological Properties of Bronze-Graphite Composite under Seawater Condition. Tribology Transactions, 2014, 57, 308-316.	2.0	11
172	Dry-Sliding Tribological Properties of Cu/AlMgB14 Composites. Tribology Letters, 2014, 55, 35-44.	2.6	11
173	Facile Preparation and Tribological Properties of Water-Based Naphthalene Dicarboxylate Ionic Liquid Lubricating Additives. Tribology Letters, 2020, 68, 1.	2.6	11
174	Cellulose acetate/fiber paper composite membrane for separation of an oil-in-water emulsion. New Journal of Chemistry, 2021, 45, 12351-12355.	2.8	11
175	Effect of amines on the antiwear properties of P-containing compounds as oil additives. Lubrication Science, 1994, 6, 283-290.	2.1	10
176	Tribological properties of PTFE-filled PMIA. Journal of Applied Polymer Science, 1999, 74, 747-751.	2.6	10
177	The Tribological Properties of a Nano-Eutectic Fe1.87C0.13 Alloy Under Liquid Paraffine Lubrication. Tribology Letters, 2010, 37, 183-189.	2.6	10
178	Treelike polymeric phosphate esters grafted onto graphene oxide and its tribological properties in polyalkylene glycol for steel/steel contact at elevated temperature. RSC Advances, 2016, 6, 47824-47832.	3.6	10
179	Low-Pressure Cold Spraying of Copper–Graphite Solid Lubricating Coatings on Aluminum Alloy 7075-T651. Journal of Thermal Spray Technology, 2019, 28, 1688-1698.	3.1	10

180Significantly Reducing Friction and Wear of Waterâ€Based Fluids with Shear Thinning Bicomponent
Supramolecular Hydrogels. Advanced Materials Interfaces, 2020, 7, 2001084.3.710

#	Article	IF	CITATIONS
181	Nanoâ€Twisted Double Helix Carbon Debris Improves the Wear Resistance of Ultraâ€Thick Diamond‣ike Carbon Coatings. Advanced Materials Interfaces, 2020, 7, 2000857.	3.7	10
182	Enhanced highâ€ŧemperature tribological performance of <scp>PTFE</scp> / <scp>PI</scp> fabric composites by simultaneously introducing <scp>PDA</scp> / <scp>SiO₂</scp> hybrid coating and aramid product reinforcements. Polymer Composites, 2021, 42, 3539-3549.	4.6	10
183	Ester Oils Prepared from Fully Renewable Resources and Their Lubricant Base Oil Properties. ACS Omega, 2021, 6, 16343-16355.	3.5	10
184	Near-Infrared Photothermal Microgel for Interfacial Friction Control. ACS Applied Polymer Materials, 2021, 3, 4055-4061.	4.4	10
185	Fabrication of bioinspired edible liquid marble with phase transition and tunable water barrier property. Bio-Design and Manufacturing, 2021, 4, 889-901.	7.7	10
186	Tribological performance of fatty acid modification of sol–gel TiO2 coating. Journal of Sol-Gel Science and Technology, 2012, 61, 558-564.	2.4	9
187	Tribological behaviour of protic ionic liquids with ammonium salts modified LABSA as lubricants and additives. Lubrication Science, 2013, 25, 217-230.	2.1	9
188	High-Temperature Tribological Behavior of Al-20Si-5Fe-2Ni/ZrB ₂ Composites. Tribology Transactions, 2018, 61, 1107-1116.	2.0	9
189	Effect of Electric Field on the Lubricating Performance of Gaâ€Based Liquid Metal. Advanced Materials Interfaces, 2019, 6, 1900028.	3.7	9
190	A study of the tribological behaviour of dialkyldithiophosphate esters as additives in rape seed oil. Journal of Synthetic Lubrication: Research, Development and Application of Synthetic Lubricants and Functional Fluids, 2002, 19, 99-108.	0.7	8
191	Tribological Behavior of Carbide-derived Carbon Coating on SiC Polycrystal against SAE52100 Steel in Moderately Humid Air. Tribology Letters, 2007, 27, 339-345.	2.6	8
192	The friction and wear characteristics and lubrication mechanism of imidazole phosphate ionic liquid. Science in China Series D: Earth Sciences, 2009, 52, 1191-1194.	0.9	8
193	Sulphate-functionalized multi-walled carbon nanotubes as catalysts for the esterification of glycerol with acetic acid. Kinetics and Catalysis, 2011, 52, 555-558.	1.0	8
194	Sliding Wear Behaviour of Nanocrystalline Fe88Si12 Alloy Under Low Load and Speed. Tribology Letters, 2012, 48, 329-335.	2.6	8
195	Comparative study on structure and properties of titanium/silicon mono―and coâ€doped amorphous carbon films deposited by midâ€frequency magnetron sputtering. Surface and Interface Analysis, 2014, 46, 139-144.	1.8	8
196	A study of 2-(n-alkyldithio)-benzoxazoles as novel additives. Tribology Letters, 1999, 7, 173-177.	2.6	7
197	Tribological Properties of a Nano-Eutectic Fe1.87C0.13 Alloy Under Water Environment. Tribology Letters, 2010, 40, 105-111.	2.6	7
198	Elastic Lubricious Effect of Solidlike Boundary Films in Oil-Starvation Lubrication. Journal of Physical Chemistry C, 2019, 123, 1677-1691.	3.1	7

WEIMIN LIU

#	Article	IF	CITATIONS
199	Effect of molecular structure of organic borates on their friction and wear properties. Lubrication Science, 1993, 6, 41-49.	2.1	6
200	The friction and wear behavior of 2-(n-alkyldithio)-benzimidazole as additives in liquid paraffin. Tribology Letters, 1999, 7, 27-30.	2.6	6
201	Study of Ni3Al-Cr7C3 composite materials fabricated by self-propagating high-temperature synthesis casting route. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 1823-1830.	2.2	6
202	Study on tribological properties of frictional material based aromatic polyamide. Journal of Applied Polymer Science, 2001, 80, 2790-2794.	2.6	6
203	Effect of the temperature on the friction-wear properties of poly(ether ketone) with a cardo group. Journal of Applied Polymer Science, 2004, 93, 696-699.	2.6	6
204	The Preparation and Tribological Investigation of Ni–P Amorphous Alloy Nanoparticles. Tribology Letters, 2010, 37, 381-387.	2.6	6
205	The Tribological Behaviour of Fe–28Al–5Cr/TiC Under Liquid Paraffine Lubrication. Tribology Letters, 2012, 45, 109-116.	2.6	6
206	Influence of Silicate Concentration in Electrolyte on the Growth and Performance of Plasma Electrolytic Oxidation Coatings Prepared on Low Carbon Steel. Journal of Materials Engineering and Performance, 2018, 27, 2345-2353.	2.5	6
207	Simple Method for the Fabrication of Multiple Superwetting Surfaces with Photoresponse. Langmuir, 2021, 37, 11115-11122.	3.5	6
208	Stable dispersibility of bentonite-type additive with gemini ionic liquid intercalation structure for oil-based drilling. Friction, 2023, 11, 201-215.	6.4	6
209	MICROWAWASSISTED SYNTHESIS OF HEXASUBSTITUTED CYCLOTRIPHOSPHAZENES. Organic Preparations and Procedures International, 2001, 33, 376-379.	1.3	5
210	Tribological behaviour of three phosphate esters containing the benzotriazole group as additives in rapeseed oil. Journal of Synthetic Lubrication: Research, Development and Application of Synthetic Lubricants and Functional Fluids, 2001, 18, 225-231.	0.7	5
211	Microstructure and mechanical behavior of nanostructured composite Cu ₆₀ Fe ₄₀ alloy. Philosophical Magazine Letters, 2011, 91, 78-85.	1.2	5
212	Effects of atomic oxygen and ultraviolet in low earth orbit on low surface energy polymer film. Journal of Applied Polymer Science, 2011, 120, 329-334.	2.6	5
213	In situ formed ionic liquids in lard oil as highâ€performance lubricants for steel/steel contacts at elevated temperature. Lubrication Science, 2018, 30, 65-72.	2.1	5
214	Additively Manufacturing Metalâ^'Organic Frameworks and Derivatives: Methods, Functional Objects, and Applications. ACS Symposium Series, 0, , 17-51.	0.5	5
215	Sliding Wear of Al-Fe-Ce-SiC Composites Lubricated with Several Typical Additives. Tribology Transactions, 1997, 40, 267-272.	2.0	4
216	Chemically attaching polyhydroxyethylmethacrylate brush on substrate surface, derivation, and the role in differential etching. Journal of Applied Polymer Science, 2007, 106, 723-729.	2.6	4

#	Article	IF	CITATIONS
217	Tribological Behavior of Multiply-Alkylated Cyclopentanes (MACs)-Cu Nanoparticles Composite Thin Film. Journal of Macromolecular Science - Physics, 2011, 50, 1006-1017.	1.0	4
218	Preparation of nano-SO 4 2â [~] ' /TiO2 catalyst and its application in esterification of sebacic acid with 2-ethyl hexanol. Kinetics and Catalysis, 2011, 52, 222-225.	1.0	4
219	Theoretical investigation of atomic oxygen erosion mechanisms of 1,3-didecyl cyclopentane, 1,3-dioctyldodecyl cyclopentane and alkylated cyclopentane. RSC Advances, 2014, 4, 50486-50493.	3.6	4
220	Well-ordered polymer nano-fibers with self-cleaning property by disturbing crystallization process. Nanoscale Research Letters, 2014, 9, 352.	5.7	4
221	Hybrid Fabric/Molybdic Acid-Modified Phenolic Resin Composites with Improved Antiwear Properties. Tribology Transactions, 2016, 59, 244-251.	2.0	4
222	Combined effects of interface modification and nanoâ€reinforcement <i>via</i> nanoâ€enhanced interphase in hybridâ€fabric composites for tribological applications. Polymer Composites, 2019, 40, 3383-3392.	4.6	4
223	Selfâ€ion irradiation on hydrogenated amorphous carbon films at depth of adhesion interlayer: Radiationâ€induced atomic intermixing and degraded film properties. Surface and Interface Analysis, 2020, 52, 553-568.	1.8	4
224	Preparation and chiral discrimination of R-(-)-2-phenylglycinol modified Î ² -cyclodextrin. Journal of Chemical Research, 2001, 2001, 330-331.	1.3	3
225	Friction and wear behaviour of Sialon/ (Ca,Mg)-Sialon with lubrication by coated PbS nanoparticles as oil additives. Lubrication Science, 2003, 16, 47-56.	2.1	3
226	Effect of deposition pressure on the adhesion and tribological properties of a-CN x H films prepared by DC-RF-PECVD. Journal of Materials Science, 2008, 43, 645-651.	3.7	3
227	Dry reciprocal sliding wear behavior of nanocrystalline Fe ₈₈ Si ₁₂ alloy. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2013, 227, 79-83.	1.8	3
228	Tribological behavior of Fe3Al-60 wt.% Fe3AlC0.5 composite under air and vacuum conditions. International Journal of Materials Research, 2014, 105, 999-1003.	0.3	3
229	Tribological behavior of aeronautical steel under oil–air lubrication containing extreme-pressure and anti-wear additives. Advances in Mechanical Engineering, 2016, 8, 168781401663829.	1.6	3
230	Superamphiphobic coatings with antifouling and nonflammable properties using functionalized hydroxyapatite. New Journal of Chemistry, 2021, 45, 6238-6246.	2.8	3
231	Optimization of the HVOF Spray Deposition of Ni3Al Coatings on Stainless Steel. Journal of Thermal Spray Technology, 2022, 31, 1598-1608.	3.1	3
232	Tribological behavior of Fe70Ni30 alloy with nanoscale twins under liquid paraffin lubrication. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2013, 227, 60-66.	1.8	2
233	The effects of the main components of seawater on the tribological properties of Cu–9Al–5Ni–4Fe–Mn alloy sliding against AISI 52100 steel. RSC Advances, 2016, 6, 6384-6394. 	3.6	2
234	Characterizing a lubricant additive for 1,3,4-tri-(2-octyldodecyl) cyclopentane: Computational study and experimental verification. Friction, 2016, 4, 257-265.	6.4	2

#	Article	IF	CITATIONS
235	WEAR BEHAVIOR OF NANOSTRUCTURED HYPOEUTECTIC Fe–B ALLOY. Surface Review and Letters, 2017, 24, 1750023.	1.1	2
236	Lubricant self-replenishing slippery surface with prolonged service life for fog harvesting. Friction, 2022, 10, 1676-1692.	6.4	2
237	Tribological properties of micron silicon carbide filled poly(ether ether ketone). Journal of Applied Polymer Science, 1999, 74, 2611-2615.	2.6	2
238	Cognitive features of white matter lesions accompanied by different risk factors of cerebrovascular diseases. Advances in Clinical and Experimental Medicine, 2019, 28, 1705-1710.	1.4	2
239	Ultrafine Eutectic-Dendrite Composite Bulk Fe-B Alloy with Enhanced Ductility. Materials Transactions, 2009, 50, 2108-2110.	1.2	1
240	Tribological Performance of Fe67B33 Alloy Prepared by a Self-Propagating High-Temperature Synthesis Technique. Tribology Letters, 2010, 37, 43-47.	2.6	1
241	Combustion synthesis and characterization of bulk nanostructured Ni ₅₀ Al ₁₇ Fe ₃₃ alloy. International Journal of Materials Research, 2012, 103, 866-869.	0.3	1
242	Microstructure and Tribological Properties of the Ti ₃ AlC ₂ Coating on A Ti–46Al–2Cr–2Nb Alloy. Advanced Engineering Materials, 2014, 16, 950-954.	3.5	1
243	Novel Fluorine-containing Trisilahydrocarbon Lubricants and Their Antiatomic Oxygen Irradiation under Simulated Space. Chemistry Letters, 2014, 43, 1578-1580.	1.3	1
244	Adhesives: Remote Control over Underwater Dynamic Attachment/Detachment and Locomotion (Adv.) Tj ETQq0	0 0 rgBT / 21.0	Overlock 10
245	A tribological study of an S–P–N containing additive in polyalphaolefin. Journal of Synthetic Lubrication: Research, Development and Application of Synthetic Lubricants and Functional Fluids, 2001, 18, 129-134.	0.7	0
246	Preparation and mechanism of polystyrene-molybdenum disulfide intercalation materials by a modified two-step route. Materials Research Innovations, 2003, 7, 366-371.	2.3	0

247	The effect of oil fouling on the mechanical and tribological properties of nomex fabric/phenolic composite. Journal of Composite Materials, 2016, 50, 427-432.	2.4	0
248	Friction and wear behavior of nanoeutectic Fe1.87C0.13 under air and vacuum conditions. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2016, 230, 481-487.	1.8	0
249	Supramolecular assembly inspired molecular engineering to dynamically tune non-Newtonian fluid:from quasi-static flowability-free to shear thickening. Journal of Colloid and Interface Science, 2022–607–1805-1812	9.4	0