
Sahil Garg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9407863/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-objective optimization of thermophysical properties of multiwalled carbon nanotubes based nanofluids. Chemosphere, 2022, 286, 131690.	8.2	20
2	Effects of microporous layer on electrolyte flooding in gas diffusion electrodes and selectivity of CO2 electrolysis to CO. Journal of Power Sources, 2022, 522, 230998.	7.8	31
3	Operando Study of MEA-Based CO ₂ Electrolyser over Copper Based Gas Diffusion Electrodes. ECS Meeting Abstracts, 2022, MA2022-01, 1765-1765.	0.0	0
4	Understanding the Temperature Effects on CO ₂ Electrolysis Performance at High Current Densities. ECS Meeting Abstracts, 2022, MA2022-01, 1783-1783.	0.0	0
5	Unveiling the effects of dimensionality of tin oxide-derived catalysts on CO ₂ reduction by using gas-diffusion electrodes. Reaction Chemistry and Engineering, 2021, 6, 345-352.	3.7	20
6	The role of electrode wettability in electrochemical reduction of carbon dioxide. Journal of Materials Chemistry A, 2021, 9, 19369-19409.	10.3	95
7	Understanding the Effects of Anion Interactions with Ag Electrodes on Electrochemical CO 2 Reduction in Choline Halide Electrolytes. ChemSusChem, 2021, 14, 2601-2611.	6.8	5
8	Cobalt Electrochemical Recovery from Lithium Cobalt Oxides in Deep Eutectic Choline Chloride+Urea Solvents. ChemSusChem, 2021, 14, 2972-2983.	6.8	33
9	Physicochemical and thermodynamic properties of aqueous blends of 3-aminopropyl triethoxysilane and amines at 298.15–333.15—K. Journal of Molecular Liquids, 2021, 332, 115440.	4.9	4
10	Catalyst–Electrolyte Interactions in Aqueous Reline Solutions for Highly Selective Electrochemical CO ₂ Reduction. ChemSusChem, 2020, 13, 304-311.	6.8	29
11	Advances and challenges in electrochemical CO ₂ reduction processes: an engineering and design perspective looking beyond new catalyst materials. Journal of Materials Chemistry A, 2020, 8, 1511-1544.	10.3	305
12	Dynamic viscosity of Titania nanotubes dispersions in ethylene glycol/water-based nanofluids: Experimental evaluation and predictions from empirical correlation and artificial neural network. International Communications in Heat and Mass Transfer, 2020, 118, 104882.	5.6	31
13	An experimental and modeling approach to investigate CO2 solubility in blended aqueous solutions of 2-amino-2-hydroxymethyl-1, 3-propanediol (AHPD) and piperazine (PZ). Cleaner Engineering and Technology, 2020, 1, 100004.	4.0	5
14	Catalyst–Electrolyte Interactions in Aqueous Reline Solutions for Highly Selective Electrochemical CO 2 Reduction. ChemSusChem, 2020, 13, 282-282.	6.8	2
15	Modulated Sn Oxidation States over a Cu ₂ O-Derived Substrate for Selective Electrochemical CO ₂ Reduction. ACS Applied Materials & Interfaces, 2020, 12, 22760-22770.	8.0	36
16	Toward Excellence of Transition Metalâ€Based Catalysts for CO ₂ Electrochemical Reduction: An Overview of Strategies and Rationales. Small Methods, 2020, 4, 2000033.	8.6	60
17	Modifying Catalyst-Electrolyte Interactions for Enhanced Electrochemical CO2 Reduction. ECS Meeting Abstracts, 2020, MA2020-01, 1518-1518.	0.0	0
18	Experimental studies and artificial neural network modeling of surface tension of aqueous sodium l-prolinate solutions and piperazine blends. Chinese Journal of Chemical Engineering, 2019, 27, 1904-1911.	3.5	7

SAHIL GARG

#	Article	IF	CITATIONS
19	Investigation of thermophysical properties for aqueous blends of sarcosine with 1-(2-aminoethyl) piperazine and diethylenetriamine as solvents for CO2 absorption. Journal of Molecular Liquids, 2019, 278, 584-591.	4.9	22
20	Application of artificial neural networks (ANN) for vaporâ€liquidâ€solid equilibrium prediction for CH ₄ O ₂ binary mixture. , 2019, 9, 67-78.		52
21	Solubility of CO2 in aqueous sodium β-alaninate: Experimental study and modeling using Kent Eisenberg model. Chemical Engineering Research and Design, 2018, 131, 385-392.	5.6	17
22	Synthesis and mixed integer programming based optimization of cryogenic packed bed pipeline network for purification of natural gas. Journal of Cleaner Production, 2018, 171, 795-810.	9.3	23
23	Experimental measurements and modeling of supercritical CO2 adsorption on 13X and 5A zeolites. Journal of Natural Gas Science and Engineering, 2018, 50, 115-127.	4.4	58
24	Experimental and correlation of viscosity and refractive index of non-aqueous system of diethanolamine (DEA) and dimethylformamide (DMF) for CO2 capture. Journal of Molecular Liquids, 2018, 250, 162-170.	4.9	32
25	High-pressure absorption study of CO 2 in aqueous N -methyldiethanolamine (MDEA) and MDEA-piperazine (PZ)-1-butyl-3-methylimidazolium trifluoromethanesulfonate [bmim][OTf] hybrid solvents. Journal of Molecular Liquids, 2018, 249, 1236-1244.	4.9	36
26	Initial solubility & density evaluation of Non-Aqueous system of amino acid salts for CO2 capture: potassium prolinate blended with ethanol and ethylene glycol. IOP Conference Series: Earth and Environmental Science, 2018, 154, 012020.	0.3	1
27	Volumetric properties of non-aqueous binary mixture of diethanolamine (DEA) and dimethylformamide (DMF). Journal of Environmental Chemical Engineering, 2018, 6, 6390-6398.	6.7	18
28	Thermophysical properties of concentrated aqueous solution of N -methyldiethanolamine (MDEA), piperazine (PZ), and ionic liquids hybrid solvent for CO 2 capture. Journal of Molecular Liquids, 2017, 229, 221-229.	4.9	54
29	Experimental and correlation study of selected physical properties of aqueous blends of potassium sarcosinate and 2-piperidineethanol as a solvent for CO2 capture. Chemical Engineering Research and Design, 2017, 118, 121-130.	5.6	22
30	Physical properties of aqueous blend of diethanolamine and sarcosine: experimental and correlation study. Chemical Papers, 2017, 71, 1799-1807.	2.2	9
31	Thermophysical properties of aqueous N -methyldiethanolamine (MDEA) and ionic liquids 1-butyl-3-methylimidazolium trifluoromethanesulfonate [bmim][OTf], 1-butyl-3-methylimidazolium acetate [bmim][Ac] hybrid solvents for CO 2 capture. Chemical Engineering Research and Design, 2017, 121, 69-80.	5.6	21
32	Experimental data, thermodynamic and neural network modeling of CO 2 solubility in aqueous sodium salt of I -phenylalanine. Journal of CO2 Utilization, 2017, 19, 146-156.	6.8	60
33	Physical properties of aqueous solutions of potassium l-prolinate from 298.15 to 343.15ÂK at atmospheric pressure. Chemical Papers, 2017, 71, 1185-1194.	2.2	11
34	Experimental and Neural Network Modeling of Partial Uptake for a Carbon Dioxide/Methane/Water Ternary Mixture on 13X Zeolite. Energy Technology, 2017, 5, 1373-1391.	3.8	51
35	Measurement and prediction of physical properties of aqueous sodium salt of L-phenylalanine. Journal of the Serbian Chemical Society, 2017, 82, 905-919.	0.8	12
36	Surface Tension and Derived Surface Thermodynamic Properties of Aqueous Sodium Salt of L-Phenylalanine. Indian Journal of Science and Technology, 2016, 9, .	0.7	13

SAHIL GARG

#	Article	IF	CITATIONS
37	Physical Properties of Aqueous Sodium Salt Solution of α-Methylalanine (Na-AMALA). Procedia Engineering, 2016, 148, 444-450.	1.2	14
38	Thermophysical Properties of Aqueous 1-Butyl-3-Methylimidazolium Acetate [BMIM] [AC] + Monoethanolamine (MEA) Hybrid as a Solvent for CO2 Capture. Procedia Engineering, 2016, 148, 1326-1331.	1.2	17
39	VLE of CO 2 in aqueous potassium salt of L-phenylalanine: Experimental data and modeling using modified Kent-Eisenberg model. Journal of Natural Gas Science and Engineering, 2016, 34, 864-872.	4.4	42
40	Selected physical properties of aqueous potassium salt of l-phenylalanine as a solvent for CO2 capture. Chemical Engineering Research and Design, 2016, 113, 169-181.	5.6	40
41	High-pressure Solubility of Carbon Dioxide in Aqueous Sodium L- Prolinate Solution. Procedia Engineering, 2016, 148, 580-587.	1.2	27