Joel S Bennett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9407515/publications.pdf

Version: 2024-02-01

50	1,428	471509 17	414414 32
papers	citations	h-index	g-index
54	54	54	1778
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Structure and function of the platelet integrin ÂlIbÂ3. Journal of Clinical Investigation, 2005, 115, 3363-3369.	8.2	300
2	Computational Design of Peptides That Target Transmembrane Helices. Science, 2007, 315, 1817-1822.	12.6	271
3	Plateletâ€Fibrinogen Interactions. Annals of the New York Academy of Sciences, 2001, 936, 340-354.	3.8	138
4	A push-pull mechanism for regulating integrin function. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1424-1429.	7.1	118
5	Agonist-activated $\hat{l}\pm\nu\hat{l}^{1}\!\!/\!\!43$ on Platelets and Lymphocytes Binds to the Matrix Protein Osteopontin. Journal of Biological Chemistry, 1997, 272, 8137-8140.	3.4	100
6	Novel Platelet Inhibitors. Annual Review of Medicine, 2001, 52, 161-184.	12.2	100
7	Computationally Designed Peptide Inhibitors of Proteinâ [^] Protein Interactions in Membranes. Biochemistry, 2008, 47, 8600-8606.	2.5	61
8	Resolving Two-dimensional Kinetics of the Integrin αllbβ3-Fibrinogen Interactions Using Binding-Unbinding Correlation Spectroscopy. Journal of Biological Chemistry, 2012, 287, 35275-35285.	3.4	36
9	Regulation of integrins in platelets. Biopolymers, 2015, 104, 323-333.	2.4	36
10	Inherited Platelet δ-Storage Pool Disease in Dogs Causing Severe Bleeding: An Animal Model for a Specific ADP Deficiency. Thrombosis and Haemostasis, 1995, 74, 949-953.	3.4	35
11	Strong Binding of Platelet Integrin αIIbβ3 to Fibrin Clots: Potential Target to Destabilize Thrombi. Scientific Reports, 2017, 7, 13001.	3.3	27
12	Directly Activating the Integrin \hat{l} ±Ilb \hat{l} 23 Initiates Outside-In Signaling by Causing \hat{l} ±Ilb \hat{l} 23 Clustering. Journal of Biological Chemistry, 2016, 291, 11706-11716.	3.4	26
13	The Tyrosine Kinase c-Src Specifically Binds to the Active Integrin αIIbβ3 to Initiate Outside-in Signaling in Platelets. Journal of Biological Chemistry, 2015, 290, 15825-15834.	3.4	25
14	Quantitative Analysis of Platelet $\hat{l}\pm\nu\hat{l}^2$ 3 Binding to Osteopontin Using Laser Tweezers. Journal of Biological Chemistry, 2003, 278, 51285-51290.	3.4	22
15	Activation of Individual αIIbÎ ² 3 Integrin Molecules by Disruption of Transmembrane Domain Interactions in the Absence of Clustering. Biochemistry, 2006, 45, 4957-4964.	2.5	21
16	Specificity for Homooligomer versus Heterooligomer Formation in Integrin Transmembrane Helices. Journal of Molecular Biology, 2010, 401, 882-891.	4.2	21
17	Identification of Interacting Hot Spots in the \hat{l}^2 3 Integrin Stalk Using Comprehensive Interface Design. Journal of Biological Chemistry, 2010, 285, 38658-38665.	3.4	18
18	De novo designed transmembrane peptides activating the $\hat{l}\pm5\hat{l}^21$ integrin. Protein Engineering, Design and Selection, 2018, 31, 181-190.	2.1	14

#	Article	IF	CITATIONS
19	Cleavage of talin by calpain promotes platelet-mediated fibrin clot contraction. Blood Advances, 2021, 5, 4901-4909.	5.2	8
20	Shedding New Light on the Platelet Storage Lesion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1715-1716.	2.4	7
21	Unique transmembrane domain interactions differentially modulate integrin $\hat{l}\pm v\hat{l}^23$ and $\hat{l}\pm llb\hat{l}^23$ function. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12295-12300.	7.1	7
22	Regulation of the Function of $\hat{l}\pm\nu\hat{l}^23$ in Platelets by a Designed Peptide Targeting the $\hat{l}\pm\nu$ Transmembrane Domain Blood, 2006, 108, 1504-1504.	1.4	7
23	Modulating Integrin αllbβ3 Activity through Mutagenesis of Allosterically Regulated Intersubunit Contacts. Biochemistry, 2019, 58, 3251-3259.	2.5	6
24	Acquired platelet function defects. , 2002, , 689-706.		4
25	Activation of Platelet $\hat{l}\pm$ lib \hat{l}^2 3 by Exogenous Peptides Corresponding to the Transmembrane Domains of $\hat{l}\pm$ lib and \hat{l}^2 3 Blood, 2005, 106, 384-384.	1.4	4
26	Outside-in: peptide versus integrin. Blood, 2008, 112, 453-454.	1.4	3
27	A novel role for endoplasmic reticulum protein 46 (ERp46) in platelet function and arterial thrombosis in mice. Blood, 2022, 139, 2050-2065.	1.4	3
28	Blood orchestrates a leukocyte integrin trio. Blood, 2007, 109, 3137-3138.	1.4	2
29	Visualization of Platelet Integrins via Two-Photon Microscopy Using Anti-transmembrane Domain Peptides Containing a Blue Fluorescent Amino Acid. Biochemistry, 2021, 60, 1722-1730.	2.5	2
30	Time-Dependent Single-Molecule Interactions of the Platelet Integrin \hat{l} ±Ilb \hat{l} 23 with Cyclic Arg-Gly-Asp and the Fibrin(ogen) \hat{l} 3C-Dodecapeptide. Blood, 2010, 116, 2103-2103.	1.4	2
31	Fibrinogen is necessary for platelet function in vivo after all. Blood, 2003, 102, 3461-3461.	1.4	1
32	¿Como se LLAMA?. Blood, 2011, 118, 487-488.	1.4	1
33	Are Antiplatelet Agents Beneficial in Essential Thrombocythemia? Maybe Yes, Probably No. Annals of Internal Medicine, 2017, 167, 206.	3.9	1
34	The Development of Small Molecule Inhibitors of Collagen Binding to the Integrin $\hat{l}\pm2\hat{l}^21$ as Antithrombotic Drugs Blood, 2005, 106, 3677-3677.	1.4	0
35	Two Specific Domains on the Upper Surface of the \hat{l} ±lib \hat{l} 2 Propeller Determine the Sensitivity of \hat{l} ±lib \hat{l} 2 for RGD-Containing Peptides Blood, 2005, 106, 2653-2653.	1.4	0
36	Computational Design of a Model for the Platelet Integrin αIIbβ3 Blood, 2006, 108, 1528-1528.	1.4	0

#	Article	IF	CITATIONS
37	The Design and Synthesis of Small Molecule Inhibitors of Collagen Binding to Integrin $\hat{l}\pm2\hat{l}^21$ as Antithrombotic Agents Blood, 2007, 110, 306-306.		0
38	Identification of Oligomerization Motifs in the \hat{I}^2 3 Transmembrane Domain Blood, 2007, 110, 416-416.		0
39	Measurement of the Lifetime of Bonds Between $\hat{l}\pm llb\hat{l}^23$ and Fibrinogen Using Constant Unbinding Forces Generated by Optical Tweezers. Blood, 2008, 112, 254-254.	1.4	0
40	Interaction of the Integrin \hat{l} ±Ilb \hat{l} 23 with Monomeric Fibrin at the Single-Molecule Level Blood, 2009, 114, 4018-4018.		0
41	Specific Thrombophilia Work-Up Approach. , 2010, 7, .		O
42	The PLATELET INTEGRIN $\hat{1}$ ±IIb $\hat{1}$ 23 CHANGES FROM A LOWER- to A Higher-AFFINITY STATE DURING INTERACTION with FIBRINOGEN. Blood, 2011, 118, 1130-1130.	1.4	0
43	Analysis of \hat{I}^2 3 Binding to the c-Src SH3 Domain. Blood, 2012, 120, 383-383.		O
44	Integrin \hat{I} ±llb \hat{I} 23-Mediated c-Src Activation: Differential Binding to Inactive and Active c-Src. Blood, 2014, 124, 4158-4158.	1.4	0
45	The Platelet Integrin alphalibbeta3 Differentially Interacts with Fibrin and Fibrinogen. Blood, 2015, 126, 3444-3444.	1.4	0
46	Characterization of the Interactions of Arg-Gly-Asp- and Ala-Gly-Asp-Val-Containing Peptides with the Platelet Integrin αIlbÎ ² 3. Blood, 2016, 128, 1350-1350.	1.4	0
47	Identification of Interacting Hot Spots in the αIIb Extracellular Stalk By Computational Alanine Scanning. Blood, 2016, 128, 2531-2531.	1.4	0
48	Active Calpain Promotes Fibrin Clot Contraction By Strengthening the Coupling of Fibrin-Bound \hat{l} ±IIb \hat{l}^2 3 to the Platelet Cytoskeleton. Blood, 2018, 132, 1128-1128.	1.4	0
49	Direct Visualization of Platelet Integrins Using ANTI-Transmembrane Domain Peptides Containing a BLUE Fluorescent Amino Acid. Blood, 2019, 134, 2344-2344.	1.4	0
50	Utilizing CRISPR-CAS9 Gene Editing Technology in Human Pluripotent Stem Cells to Study Platelet Integrin $\hat{I}\pm Ilb\hat{I}^2$ 3 Function. Blood, 2020, 136, 3-3.	1.4	0