Barbara Finlayson-Pitts

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9407494/barbara-finlayson-pitts-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

211	11,923	55	103
papers	citations	h-index	g-index
225 ext. papers	12,812 ext. citations	7.3 avg, IF	6.45 L-index

#	Paper	IF	Citations
211	Probing Matrix Effects on the Heterogeneous Photochemistry of Neonicotinoid Pesticides, Dinotefuran and Nitenpyram. <i>ACS Earth and Space Chemistry</i> , 2021 , 5, 1196-1209	3.2	O
210	Unexpected formation of oxygen-free products and nitrous acid from the ozonolysis of the neonicotinoid nitenpyram. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 11321-11327	11.5	8
209	Integrated experimental and theoretical approach to probe the synergistic effect of ammonia in methanesulfonic acid reactions with small alkylamines. <i>Environmental Sciences: Processes and Impacts</i> , 2020 , 22, 305-328	4.3	10
208	Novel ionization reagent for the measurement of gas-phase ammonia and amines using a stand-alone atmospheric pressure gas chromatography (APGC) source. <i>Rapid Communications in Mass Spectrometry</i> , 2020 , 34, e8561	2.2	2
207	Evidence for a kinetically controlled burying mechanism for growth of high viscosity secondary organic aerosol. <i>Environmental Sciences: Processes and Impacts</i> , 2020 , 22, 66-83	4.3	6
206	Size-Resolved Chemical Composition of Sub-20 nm Particles from Methanesulfonic Acid Reactions with Methylamine and Ammonia. <i>ACS Earth and Space Chemistry</i> , 2020 , 4, 1182-1194	3.2	8
205	Enhanced Gas Uptake during Pinene Ozonolysis Points to a Burying Mechanism. <i>ACS Earth and Space Chemistry</i> , 2020 , 4, 1435-1447	3.2	1
204	Experimental and Theoretical Studies of the Environmental Sensitivity of the Absorption Spectra and Photochemistry of Nitenpyram and Analogs. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 2063-2075	3.2	7
203	Probing surfaces of atmospherically relevant organic particles by easy ambient sonic-spray ionization mass spectrometry (EASI-MS). <i>Chemical Science</i> , 2019 , 10, 884-897	9.4	7
202	Quantum Yields and NO Formation from Photolysis of Solid Films of Neonicotinoids. <i>Journal of Agricultural and Food Chemistry</i> , 2019 , 67, 1638-1646	5.7	7
201	Multiphase chemistry in the troposphere: It all starts hand ends with gases. <i>International Journal of Chemical Kinetics</i> , 2019 , 51, 736-752	1.4	4
200	Role of Gas-Phase Halogen Bonding in Ambient Chemical Ionization Mass Spectrometry Utilizing Iodine. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 1315-1328	3.2	1
199	Photochemistry of Solid Films of the Neonicotinoid Nitenpyram. <i>Environmental Science & Environmental </i>	10.3	12
198	New Mechanism of Extractive Electrospray Ionization Mass Spectrometry for Heterogeneous Solid Particles. <i>Analytical Chemistry</i> , 2018 , 90, 2055-2062	7.8	15
197	Uptake of water by an acid-base nanoparticle: theoretical and experimental studies of the methanesulfonic acid-methylamine system. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 22249-22259	3.6	12
196	Understanding interactions of organic nitrates with the surface and bulk of organic films: implications for particle growth in the atmosphere. <i>Environmental Sciences: Processes and Impacts</i> , 2018 , 20, 1593-1610	4.3	11
195	The Role of Oxalic Acid in New Particle Formation from Methanesulfonic Acid, Methylamine, and Water. <i>Environmental Science & Environmental Science & </i>	10.3	38

Kinetics, mechanisms and ionic liquids in the uptake of n-butylamine onto low molecular weight dicarboxylic acids. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 4827-4839	3.6	9
Introductory lecture: atmospheric chemistry in the Anthropocene. Faraday Discussions, 2017, 200, 11-58	3.6	15
Proton Transfer in Mixed Clusters of Methanesulfonic Acid, Methylamine, and Oxalic Acid: Implications for Atmospheric Particle Formation. <i>Journal of Physical Chemistry A</i> , 2017 , 121, 2377-2385	2.8	29
Photochemistry of Thin Solid Films of the Neonicotinoid Imidacloprid on Surfaces. <i>Environmental Science & Environmental Scien</i>	10.3	26
Particle formation and growth from oxalic acid, methanesulfonic acid, trimethylamine and water: a combined experimental and theoretical study. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 28286-283	0³1 ⁶	30
New insights into atmospherically relevant reaction systems using direct analysis in real-time mass spectrometry (DART-MS). <i>Atmospheric Measurement Techniques</i> , 2017 , 10, 1373-1386	4	15
A cautionary note on the effects of laboratory air contaminants on ambient ionization mass spectrometry measurements. <i>Rapid Communications in Mass Spectrometry</i> , 2017 , 31, 1659-1668	2.2	10
Knudsen cell studies of the uptake of gaseous ammonia and amines onto C3-C7 solid dicarboxylic acids. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 26296-26309	3.6	4
Nanoparticles grown from methanesulfonic acid and methylamine: microscopic structures and formation mechanism. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 31949-31957	3.6	8
New Particle Formation from Methanesulfonic Acid and Amines/Ammonia as a Function of Temperature. <i>Environmental Science & Environmental Science & Env</i>	10.3	57
Phase, composition, and growth mechanism for secondary organic aerosol from the ozonolysis of <i>-cedrene. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 3245-3264	6.8	25
Reactions of Methanesulfonic Acid with Amines and Ammonia as a Source of New Particles in Air. Journal of Physical Chemistry B, 2016 , 120, 1526-36	3.4	86
Challenges associated with the sampling and analysis of organosulfur compounds in air using real-time PTR-ToF-MS and offline GC-FID. <i>Atmospheric Measurement Techniques</i> , 2016 , 9, 1325-1340	4	20
Mechanism for formation of atmospheric Cl atom precursors in the reaction of dinitrogen oxides with HCl/Cl(-) on aqueous films. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 19360-70	3.6	18
New particle formation and growth from methanesulfonic acid, trimethylamine and water. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 13699-709	3.6	67
Role of the reaction of stabilized Criegee intermediates with peroxy radicals in particle formation and growth in air. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 12500-14	3.6	66
The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 13514-9	11.5	57
The effect of cations on NO2 production from the photolysis of aqueous thin water films of nitrate salts. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 32211-8	3.6	10
	Introductory lecture: atmospheric chemistry Chemical Physics, 2017, 19, 4827-4839 Introductory lecture: atmospheric chemistry in the Anthropocene. Faraday Discussions, 2017, 200, 11-56 (Implications for Atmospheric Patricle Formation. Journal of Physical Chemistry, A, 2017, 121, 2377-2385 (Photochemistry of Thin Solid Films of the Neonicotinoid Imidacloprid on Surfaces. Environmental Science & Description of Science	Introductory lecture: atmospheric chemistry Chemical Physics, 2017, 19, 4827-4839 Proton Transfer in Mixed Clusters of Methanesulfonic Acid, Methylamine, and Oxalic Acid: Implications for Atmospheric Particle Formation. Journal of Physical Chemistry A, 2017, 121, 2377-2385 Photochemistry of Thin Solid Films of the Neonicotinoid Imidacloprid on Surfaces. Environmental science & amp; Technology, 2017, 51, 2660-2668 Particle Formation and growth from oxalic acid, methanesulfonic acid, trimethylamine and water: a combined experimental and theoretical study. Physical Chemistry Chemical Physics, 2017, 19, 28286-2830 ¹⁶ New insights into atmospherically relevant reaction systems using direct analysis in real-time mass spectrometry (DART-MS). Atmospheric Measurement Techniques, 2017, 10, 1373-1386 A cautionary note on the effects of laboratory air contaminants on ambient ionization mass spectrometry measurements. Rapid Communications in Mass Spectrometry, 2017, 31, 1659-1668 2.2 Knudsen cell studies of the uptake of gaseous ammonia and amines onto C3-C7 solid dicarboxylic acids. Physical Chemistry Chemical Physics, 2017, 19, 26296-26309 Nanoparticles grown from methanesulfonic acid and methylamine: microscopic structures and formation mechanism. Physical Chemistry Chemical Physics, 2017, 19, 31949-31957 New Particle Formation from Methanesulfonic Acid and Amines/Ammonia as a Function of Temperature. Environmental Science & amp; Technology, 2017, 51, 243-252 Phase, composition, and growth mechanism for secondary organic aerosol from the ozonolysis of 8lt;Rgt;Rgt;-cedrene. Atmospheric Chemistry and Physics, 2016, 16, 3245-3264 Challenges associated with the sampling and analysis of organosulfur compounds in air using real-time PTR-Tof-MS and offline GC-FID. Atmospheric Measurement Techniques, 2016, 19, 1325-1340 Mechanism for formation of atmospheric Cl atom precursors in the reaction of dinitrogen oxides with HCI/CI(-) on aqueous films. Physical Chemistry Chemical Physics, 2015, 17, 1360-70 New particle fo

176	Computational studies of atmospherically-relevant chemical reactions in water clusters and on liquid water and ice surfaces. <i>Accounts of Chemical Research</i> , 2015 , 48, 399-406	24.3	68
175	Rapid formation of molecular bromine from deliquesced NaBr aerosol in the presence of ozone and UV light. <i>Atmospheric Environment</i> , 2014 , 89, 491-506	5.3	12
174	Infrared studies of the reaction of methanesulfonic acid with trimethylamine on surfaces. <i>Environmental Science & Environmental Science & Environment</i>	10.3	15
173	Reaction of a charge-separated ONONO2 species with water in the formation of HONO: an MP2 Molecular Dynamics study. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 4483-7	3.6	24
172	New insights into secondary organic aerosol from the ozonolysis of ⊕inene from combined infrared spectroscopy and mass spectrometry measurements. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 22706-16	3.6	24
171	Interactions of gaseous HNO3 and water with individual and mixed alkyl self-assembled monolayers at room temperature. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 2358-67	3.6	6
170	Aerosol fast flow reactor for laboratory studies of new particle formation. <i>Journal of Aerosol Science</i> , 2014 , 78, 30-40	4.3	17
169	Surfactant-free latex spheres for size calibration of mobility particle sizers in atmospheric aerosol applications. <i>Atmospheric Environment</i> , 2014 , 82, 56-59	5.3	8
168	Measurement of gas-phase ammonia and amines in air by collection onto an ion exchange resin and analysis by ion chromatography. <i>Atmospheric Measurement Techniques</i> , 2014 , 7, 2733-2744	4	40
167	Measurement of gas-phase ammonia and amines in air by collection onto an ion exchange resin and analysis by ion chromatography 2014 ,		7
167 166		3.8	7
	analysis by ion chromatography 2014 ,	3.8	7 26
166	analysis by ion chromatography 2014 , Preface of John C. Hemminger Festschrift. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 28923-28923 Amine Amine Exchange in Aminium Methanesulfonate Aerosols. <i>Journal of Physical Chemistry C</i> ,		
166 165	analysis by ion chromatography 2014, Preface of John C. Hemminger Festschrift. <i>Journal of Physical Chemistry C</i> , 2014, 118, 28923-28923 Amine Amine Exchange in Aminium Methanesulfonate Aerosols. <i>Journal of Physical Chemistry C</i> , 2014, 118, 29431-29440 Integrating phase and composition of secondary organic aerosol from the ozonolysis of Dinene.	3.8	26
166 165 164	analysis by ion chromatography 2014, Preface of John C. Hemminger Festschrift. <i>Journal of Physical Chemistry C</i> , 2014, 118, 28923-28923 Amine Amine Exchange in Aminium Methanesulfonate Aerosols. <i>Journal of Physical Chemistry C</i> , 2014, 118, 29431-29440 Integrating phase and composition of secondary organic aerosol from the ozonolysis of Dinene. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014, 111, 7552-7 A semi-blind source separation method for differential optical absorption spectroscopy of	3.8	26 116
166165164163	Amine Amine Exchange in Aminium Methanesulfonate Aerosols. <i>Journal of Physical Chemistry C</i> , 2014, 118, 28923-28923 Amine Amine Exchange in Aminium Methanesulfonate Aerosols. <i>Journal of Physical Chemistry C</i> , 2014, 118, 29431-29440 Integrating phase and composition of secondary organic aerosol from the ozonolysis of Dinene. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014, 111, 7552-7 A semi-blind source separation method for differential optical absorption spectroscopy of atmospheric gas mixtures. <i>Inverse Problems and Imaging</i> , 2014, 8, 587-610	3.8 11.5 2.1	26 116
166165164163162	AmineAmine Exchange in AminiumMethanesulfonate Aerosols. <i>Journal of Physical Chemistry C</i> , 2014, 118, 28923-28923 AmineAmine Exchange in AminiumMethanesulfonate Aerosols. <i>Journal of Physical Chemistry C</i> , 2014, 118, 29431-29440 Integrating phase and composition of secondary organic aerosol from the ozonolysis of Dinene. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014, 111, 7552-7 A semi-blind source separation method for differential optical absorption spectroscopy of atmospheric gas mixtures. <i>Inverse Problems and Imaging</i> , 2014, 8, 587-610 Chlorine chronicles. <i>Nature Chemistry</i> , 2013, 5, 724 Experimental and theoretical studies of the interaction of gas phase nitric acid and water with a	3.8 11.5 2.1 17.6	26 116 9

(2010-2013)

158	Hydroxyl radical oxidation of phospholipid-coated NaCl particles. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 9833-44	3.6	15
157	Heterogeneous oxidation of a phosphocholine on synthetic sea salt by ozone at room temperature. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 1990-2002	3.6	8
156	Isomerization and ionization of N2O4 on model ice and silica surfaces. Chemical Physics, 2012, 405, 52-	592.3	11
155	Thermal and photochemical reactions of NO2 on chromium(III) oxide surfaces at atmospheric pressure. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 15840-8	3.6	10
154	Measurement of vapor pressures and heats of sublimation of dicarboxylic acids using atmospheric solids analysis probe mass spectrometry. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 5900-9	2.8	23
153	NOx Reactions on Aqueous Surfaces with Gaseous HCl: Formation of a Potential Precursor to Atmospheric Cl Atoms. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 3405-10	6.4	30
152	Production of gas phase NOIand halogens from the photochemical oxidation of aqueous mixtures of sea salt and nitrate ions at room temperature. <i>Environmental Science & Discounty (Control of the Control of the Control</i>	10.3	27
151	Moyers receives Edward A. Flinn III Award: Citation. <i>Eos</i> , 2012 , 93, 33-34	1.5	
150	Analysis of secondary organic aerosols in air using extractive electrospray ionization mass spectrometry (EESI-MS). <i>RSC Advances</i> , 2012 , 2, 2930	3.7	39
149	Nonequilibrium atmospheric secondary organic aerosol formation and growth. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 2836-41	11.5	234
148	Simplified mechanism for new particle formation from methanesulfonic acid, amines, and water via experiments and ab initio calculations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 18719-24	11.5	131
147	F. Sherwood Rowland: A man of science, vision, integrity, and kindness. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 13881-13882	11.5	78
146	Surprising formation of p-cymene in the oxidation of pinene in air by the atmospheric oxidants OH, O3, and NO3. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	21
145	The impact of organic coatings on light scattering by sodium chloride particles. <i>Atmospheric Environment</i> , 2011 , 45, 4123-4132	5.3	14
144	Thermal and photochemical oxidation of self-assembled monolayers on alumina particles exposed to nitrogen dioxide. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 604-11	3.6	3
143	Nitrate ion photolysis in thin water films in the presence of bromide ions. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 5810-21	2.8	44
142	Atmospheric chemistry. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 6566-7	11.5	29
141	A New Aerosol Flow System for Photochemical and Thermal Studies of Tropospheric Aerosols. <i>Aerosol Science and Technology</i> , 2010 , 44, 329-338	3.4	31

140	Catalytic role for water in the atmospheric production of ClNO. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 4609-18	2.8	38
139	Hydroxyl radical quantum yields from isopropyl nitrite photolysis in air. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	17
138	Halogens in the troposphere. <i>Analytical Chemistry</i> , 2010 , 82, 770-6	7.8	55
137	Identification of organic nitrates in the NO3 radical initiated oxidation of alpha-pinene by atmospheric pressure chemical ionization mass spectrometry. <i>Environmental Science & Environmental Scienc</i>	10.3	49
136	Identification of Fatty Acids, Phospholipids, and Their Oxidation Products Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry and Electrospray Ionization Mass Spectrometry. <i>Journal of Chemical Education</i> , 2010 , 87, 186-189	2.4	12
135	Comparison of FTIR and particle mass spectrometry for the measurement of particulate organic nitrates. <i>Environmental Science & Environmental Science </i>	10.3	137
134	Atmospheric solids analysis probe mass spectrometry: a new approach for airborne particle analysis. <i>Analytical Chemistry</i> , 2010 , 82, 5922-7	7.8	35
133	Reaction of gas phase OH with unsaturated self-assembled monolayers and relevance to atmospheric organic oxidations. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 9419-28	3.6	27
132	Characterization of organic coatings on hygroscopic salt particles and their atmospheric impacts. <i>Atmospheric Environment</i> , 2010 , 44, 1209-1218	5.3	27
131	Chlorine activation indoors and outdoors via surface-mediated reactions of nitrogen oxides with hydrogen chloride. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 13647-54	11.5	96
130	Contamination from electrically conductive silicone tubing during aerosol chemical analysis. <i>Atmospheric Environment</i> , 2009 , 43, 2836-2839	5.3	20
129	Probing the sensitivity of gaseous Br2 production from the oxidation of aqueous bromide-containing aerosols and atmospheric implications. <i>Atmospheric Environment</i> , 2009 , 43, 3951-39	9 6 2³	15
128	Reactions at surfaces in the atmosphere: integration of experiments and theory as necessary (but not necessarily sufficient) for predicting the physical chemistry of aerosols. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 7760-79	3.6	193
127	Structure of large nitrate-water clusters at ambient temperatures: simulations with effective fragment potentials and force fields with implications for atmospheric chemistry. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 12805-14	2.8	44
126	Nitrite-induced oxidation of organic coatings on models for airborne particles. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 7205-12	2.8	12
125	Ionization of N2O4 in contact with water: mechanism, time scales and atmospheric implications. <i>Journal of the American Chemical Society</i> , 2009 , 131, 12180-5	16.4	67
124	Experimental and theoretical characterization of adsorbed water on self-assembled monolayers: understanding the interaction of water with atmospherically relevant surfaces. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 2060-9	2.8	51
123	Secondary Ozonide Formation from the Ozone Oxidation of Unsaturated Self-Assembled Monolayers on Zinc Selenide Attenuated Total Reflectance Crystals. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 11060-11065	3.8	18

(2004-2008)

	Photooxidation of Dinene at high relative humidity in the presence of increasing concentrations of NOx. <i>Atmospheric Environment</i> , 2008 , 42, 5044-5060	5.3	70
121	Sensitivity and uncertainty analysis of the mechanism of gas-phase chlorine production from NaCl aerosols in the MAGIC model. <i>Atmospheric Environment</i> , 2008 , 42, 6934-6941	5.3	7
120	Complexes of HNO3 and NO3 - with NO2 and N2O4, and their potential role in atmospheric HONO formation. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 6019-32	3.6	36
119	Enhanced surface photochemistry in chloride-nitrate ion mixtures. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 5668-77	3.6	51
118	Unusual oxidation of organics at interfaces from the bottom up and atmospheric implications. Journal of the American Chemical Society, 2008 , 130, 11272-3	16.4	17
117	A new mechanism for ozonolysis of unsaturated organics on solids: phosphocholines on NaCl as a model for sea salt particles. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 528-41	3.6	37
116	Nitrate ion photochemistry at interfaces: a new mechanism for oxidation of alpha-pinene. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 3063-71	3.6	24
115	A new approach to studying aqueous reactions using diffuse reflectance infrared Fourier transform spectrometry: application to the uptake and oxidation of SO2 on OH-processed model sea salt aerosol. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 1980-90	3.6	22
114	Enhanced photolysis in aerosols: evidence for important surface effects. <i>Physical Chemistry Chemical Physics</i> , 2006 , 8, 4700-10	3.6	59
113	Substrate changes associated with the chemistry of self-assembled monolayers on silicon. <i>Langmuir</i> , 2006 , 22, 5617-24	4	17
112	Gas-phase molecular halogen formation from NaCl and NaBr aerosols: when are interface reactions		
	important?. Journal of Physical Chemistry A, 2006 , 110, 1859-67	2.8	47
111	Photochemical processes induced by vibrational overtone excitations: dynamics simulations for cis-HONO, trans-HONO, HNO3, and HNO3-H2O. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 5342-54	2.8	47
111	Photochemical processes induced by vibrational overtone excitations: dynamics simulations for		
	Photochemical processes induced by vibrational overtone excitations: dynamics simulations for cis-HONO, trans-HONO, HNO3, and HNO3-H2O. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 5342-54 New experimental and theoretical approach to the heterogeneous hydrolysis of NO2: key role of	2.8	47
110	Photochemical processes induced by vibrational overtone excitations: dynamics simulations for cis-HONO, trans-HONO, HNO3, and HNO3-H2O. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 5342-54 New experimental and theoretical approach to the heterogeneous hydrolysis of NO2: key role of molecular nitric acid and its complexes. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 6886-97 A new approach to determining gas-particle reaction probabilities and application to the heterogeneous reaction of deliquesced sodium chloride particles with gas-phase hydroxyl radicals.	2.8	47
110	Photochemical processes induced by vibrational overtone excitations: dynamics simulations for cis-HONO, trans-HONO, HNO3, and HNO3-H2O. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 5342-54 New experimental and theoretical approach to the heterogeneous hydrolysis of NO2: key role of molecular nitric acid and its complexes. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 6886-97 A new approach to determining gas-particle reaction probabilities and application to the heterogeneous reaction of deliquesced sodium chloride particles with gas-phase hydroxyl radicals. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 10619-27 Unusual aggregates from the oxidation of alkene self-assembled monolayers: a previously	2.8 2.8 2.8 3.6	47 103 55
110	Photochemical processes induced by vibrational overtone excitations: dynamics simulations for cis-HONO, trans-HONO, HNO3, and HNO3-H2O. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 5342-54 New experimental and theoretical approach to the heterogeneous hydrolysis of NO2: key role of molecular nitric acid and its complexes. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 6886-97 A new approach to determining gas-particle reaction probabilities and application to the heterogeneous reaction of deliquesced sodium chloride particles with gas-phase hydroxyl radicals. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 10619-27 Unusual aggregates from the oxidation of alkene self-assembled monolayers: a previously unrecognized mechanism for SAM ozonolysis?. <i>Physical Chemistry Chemical Physics</i> , 2005 , 7, 3605-9 Response to Comments on "Reactions at Interfaces As a Source of Sulfate Formation in Sea-Salt	2.8 2.8 2.8 3.6	47 103 55 41

104	The nature of water on surfaces of laboratory systems and implications for heterogeneous chemistry in the troposphere. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 604	3.6	182
103	Adsorption of Atmospherically Relevant Gases at the Air/Water Interface: Free Energy Profiles of Aqueous Solvation of N2, O2, O3, OH, H2O, HO2, and H2O2. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 11573-11579	2.8	162
102	Interaction of Gas-Phase Ozone at 296 K with Unsaturated Self-Assembled Monolayers: ☐ New Look at an Old System. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 10473-10485	2.8	116
101	Formation of Molecular Bromine from the Reaction of Ozone with Deliquesced NaBr Aerosol: Evidence for Interface Chemistry. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 11559-11572	2.8	129
100	Sodium nitrate particles: physical and chemical properties during hydration and dehydration, and implications for aged sea salt aerosols. <i>Journal of Aerosol Science</i> , 2004 , 35, 869-887	4.3	131
99	Fluorescence, Absorption, and Excitation Spectra of Polycyclic Aromatic Hydrocarbons as a Tool for Quantitative Analysis. <i>Journal of Chemical Education</i> , 2004 , 81, 242	2.4	46
98	Measurement of Trace Metals in Tobacco and Cigarette Ash by Inductively Coupled Plasma-Atomic Emission Spectroscopy. <i>Journal of Chemical Education</i> , 2003 , 80, 83	2.4	15
97	Measurement of Organics Using Three FTIR Techniques: Absorption, Attenuated Total Reflectance, and Diffuse Reflectance. <i>Journal of Chemical Education</i> , 2003 , 80, 672	2.4	6
96	Knudsen Cell Studies of the Reaction of Gaseous HNO3with NaCl Using Less than a Single Layer of Particles at 298 K: A Modified Mechanism. <i>Journal of Physical Chemistry A</i> , 2003 , 107, 7818-7826	2.8	38
95	The tropospheric chemistry of sea salt: a molecular-level view of the chemistry of NaCl and NaBr. <i>Chemical Reviews</i> , 2003 , 103, 4801-22	68.1	342
94	The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: An integrated mechanism. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 223-242	3.6	486
93	Laboratory studies of potential mechanisms of renoxification of tropospheric nitric acid. <i>Environmental Science & Environmental Science & Environment</i>	10.3	65
92	HONO decomposition on borosilicate glass surfaces: implications for environmental chamber studies and field experiments. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 5236	3.6	46
91	Knudsen cell studies of the reactions of N2O5 and ClONO2 with NaCl: development and application of a model for estimating available surface areas and corrected uptake coefficients. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 1780-1789	3.6	44
90	Reactions at interfaces as a source of sulfate formation in sea-salt particles. <i>Science</i> , 2003 , 301, 340-4	33.3	222
89	Molecular halogens before and during ozone depletion events in the Arctic at polar sunrise: concentrations and sources. <i>Atmospheric Environment</i> , 2002 , 36, 2721-2731	5.3	108
88	Kinetics of reactions of chlorine atoms with a series of alkenes at 1 atm and 298 K: structure and reactivity. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 5813-5820	3.6	106
87	An upper limit to the concentration of an SO2 complex at the airWater interface at 298 K: infrared experiments and ab initio calculations. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 1832-1838	3.6	19

(2000-2002)

86	Rate constants for the reactions of chlorine atoms with a series of unsaturated aldehydes and ketones at 298 K: structure and reactivity. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 1824-1831	3.6	37
85	The role of Br2 and BrCl in surface ozone destruction at polar sunrise. <i>Science</i> , 2001 , 291, 471-4	33.3	326
84	Unique markers of chlorine atom chemistry in coastal urban areas: The reaction with 1,3-butadiene in air at room temperature. <i>Journal of Geophysical Research</i> , 2001 , 106, 4939-4958		10
83	Reaction of Gaseous Nitric Oxide with Nitric Acid on Silica Surfaces in the Presence of Water at Room Temperature. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 10339-10346	2.8	78
82	Uptake and Reaction of ClONO2on NaCl and Synthetic Sea Salt. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 5178-5187	2.8	34
81	Infrared Spectroscopic Studies of Binary Solutions of Nitric Acid and Water and Ternary Solutions of Nitric Acid, Sulfuric Acid, and Water at Room Temperature: Evidence for Molecular Nitric Acid at the Surface. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 1890-1896	2.8	42
80	The Atmospheric System 2000 , 15-42		6
79	Photochemistry of Important Atmospheric Species 2000 , 86-129		10
78	Kinetics and Atmospheric Chemistry 2000 , 130-178		37
77	Rates and Mechanisms of Gas-Phase Reactions in Irradiated Organic INOx IAir Mixtures 2000 , 179-263		18
76	Chemistry of Inorganic Nitrogen Compounds 2000 , 264-293		10
75	Acid Deposition: Formation and Fates of Inorganic and Organic Acids in the Troposphere 2000 , 294-348		15
74	Homogeneous and Heterogeneous Chemistry in the Stratosphere 2000 , 657-726		5
73	Global Tropospheric Chemistry and Climate Change 2000 , 762-843		3
72	Particles in the Troposphere 2000 , 349-435		13
71	Airborne Polycyclic Aromatic Hydrocarbons and Their Derivatives: Atmospheric Chemistry and Toxicological Implications 2000 , 436-546		11
70	Analytical Methods and Typical Atmospheric Concentrations for Gases and Particles 2000 , 547-656		7
69	Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols. <i>Science</i> , 2000 , 288, 301-6	33.3	566

68	Infrared Absorption Cross-Section Measurements for Nitrous Acid (HONO) at Room Temperature. Journal of Physical Chemistry A, 2000 , 104, 1692-1699	2.8	47
67	FTIR Studies of the Reaction of Gaseous NO with HNO3 on Porous Glass: Implications for Conversion of HNO3 to Photochemically Active NOx in the Atmosphere. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 9705-9711	2.8	54
66	A Unique Method for Laboratory Quantification of Gaseous Nitrous Acid (HONO) Using the Reaction HONO + HCl -iClNO + H2O. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 329-335	2.8	16
65	Enhancement of N2O4 on Porous Glass at Room Temperature: A Key Intermediate in the Heterogeneous Hydrolysis of NO2?. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 171-175	2.8	48
64	Real-Time Monitoring of the Kinetics and Gas-Phase Products of the Reaction of Ozone with an Unsaturated Phospholipid at the Air Water Interface. <i>Langmuir</i> , 2000 , 16, 9321-9330	4	92
63	Physical Chemistry of Airborne Sea Salt Particles and Their Components. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 11463-11477	2.8	190
62	4-Chlorocrotonaldehyde as a unique chlorine-containing compound from the reaction of atomic chlorine with 1,3-butadiene in air at room temperature. <i>Geophysical Research Letters</i> , 2000 , 27, 947-950	4.9	7
61	The uptake of SO2 on synthetic sea salt and some of its components. <i>Geophysical Research Letters</i> , 2000 , 27, 887-890	4.9	34
60	Laboratory studies of sources of HONO in polluted urban atmospheres. <i>Geophysical Research Letters</i> , 2000 , 27, 3229-3232	4.9	46
59	FTIR Study of N2O3on Porous Glass at Room Temperature. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 8038-8044	2.8	7
58	Kinetics of reaction of chlorine atoms with some biogenic organics. <i>International Journal of Chemical Kinetics</i> , 1999 , 31, 491-499	1.4	51
57	Techniques for quantifying gaseous HOCl using atmospheric pressure ionization mass spectrometry. <i>Physical Chemistry Chemical Physics</i> , 1999 , 1, 5615-5621	3.6	14
56	Characterization of HOCl Using Atmospheric Pressure Ionization Mass Spectrometry. <i>Journal of Physical Chemistry A</i> , 1999 , 103, 8231-8238	2.8	20
55	Heterogeneous chemistry in the troposphere: Experimental approaches and applications to the chemistry of sea salt particles. <i>International Reviews in Physical Chemistry</i> , 1999 , 18, 343-385	7	73
54	Kinetics of reaction of chlorine atoms with some biogenic organics 1999 , 31, 491		1
53	Unexpectedly high concentrations of molecular chlorine in coastal air. <i>Nature</i> , 1998 , 394, 353-356	50.4	520
52	Reply to Comment on Inverse Kinetic Isotope Effect in the Reaction of Atomic Chlorine with C2H4 and C2D4[] <i>Journal of Physical Chemistry A</i> , 1998 , 102, 6056-6056	2.8	
51	Bromine activation in the troposphere by the dark reaction of O3 with seawater ice. <i>Geophysical Research Letters</i> , 1998 , 25, 3923-3926	4.9	108

50	An upper limit on the production of N2O from the reaction of O(ID) With CO2 in the presence of N2. <i>Geophysical Research Letters</i> , 1998 , 25, 517-520	4.9	6
49	Rate Constants and Kinetic Isotope Effects in the Reactions of Atomic Chlorine with n-Butane and Simple Alkenes at Room Temperature. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 8510-8519	2.8	74
48	A New GC-MS Experiment for the Undergraduate Instrumental Analysis Laboratory in Environmental Chemistry: Methyl-t-butyl Ether and Benzene in Gasoline. <i>Journal of Chemical Education</i> , 1998 , 75, 1595	2.4	14
47	Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt particles. <i>Science</i> , 1998 , 279, 74-7	33.3	262
46	Chromatography, Absorption, and Fluorescence: A New Instrumental Analysis Experiment on the Measurement of Polycyclic Aromatic Hydrocarbons in Cigarette Smoke. <i>Journal of Chemical Education</i> , 1998 , 75, 1599	2.4	12
45	Inverse Kinetic Isotope Effect in the Reaction of Atomic Chlorine with C2H4 and C2D4. <i>Journal of Physical Chemistry A</i> , 1997 , 101, 9187-9190	2.8	23
44	Diffuse Reflectance Infrared Studies of the Reaction of Synthetic Sea Salt Mixtures with NO2: A Key Role for Hydrates in the Kinetics and Mechanism. <i>Journal of Physical Chemistry A</i> , 1997 , 101, 1277-1	2 2 86	76
43	Kinetics and Mechanism of the Reaction of Cl Atoms with 2-Methyl-1,3-butadiene (Isoprene) at 298 K. <i>Journal of Physical Chemistry A</i> , 1997 , 101, 1509-1517	2.8	91
42	Knudsen Cell Studies of the Reaction of Gaseous Nitric Acid with Synthetic Sea Salt at 298 K. Journal of Physical Chemistry A, 1997 , 101, 9993-9999	2.8	58
41	Unique products of the reaction of isoprene with atomic chlorine: Potential markers of chlorine atom chemistry. <i>Geophysical Research Letters</i> , 1997 , 24, 1615-1618	4.9	37
40	Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. <i>Science</i> , 1997 , 276, 1045-52	33.3	859
39	Illustration of Deviations in the Beer-Lambert Law in an Instrumental Analysis Laboratory: Measuring Atmospheric Pollutants by Differential Optical Absorption Spectrometry. <i>Journal of Chemical Education</i> , 1997 , 74, 1459	2.4	8
38	Analysis of relative rate measurements. International Journal of Chemical Kinetics, 1997, 29, 665-672	1.4	57
37	Knudsen Cell Studies of the Uptake of Gaseous HNO3and Other Oxides of Nitrogen on Solid NaCl: The Role of Surface-Adsorbed Water. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 15218-15228		118
36	X-ray Photoelectron Spectroscopy Studies of the Effects of Water Vapor on Ultrathin Nitrate Layers on NaCl. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 19891-19897		51
35	The dimethyl sulfide reaction with atomic chlorine and its implications for the budget of methyl chloride. <i>Geophysical Research Letters</i> , 1996 , 23, 1661-1664	4.9	14
34	Water-Induced Reorganization of Ultrathin Nitrate Films on NaCl: Implications for the Tropospheric Chemistry of Sea Salt Particles. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 6371-6375		103
33	A Diffuse Reflectance Infrared Fourier Transform Spectroscopic (DRIFTS) Study of the Surface Reaction of NaCl with Gaseous NO2 and HNO3. [Erratum to document cited in CA120:228408]. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 13052-13052		12

32	Rate Constants for the Reactions of Chlorine Atoms with Some Simple Alkanes at 298 K: Measurement of a Self-Consistent Set Using Both Absolute and Relative Rate Methods. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 13156-13162		53
31	Unique Photochemistry of Surface Nitrate. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 17269-17272		18
30	Are Changes in Breathing Pattern on Exposure to Ozone Related to Changes in Pulmonary Surfactant?. <i>Inhalation Toxicology</i> , 1994 , 6, 267-287	2.7	9
29	X-ray photoelectron spectroscopic studies of the heterogenous reaction of gaseous nitric acid with sodium chloride: Kinetics and contribution to the chemistry of the marine troposphere. <i>Geophysical Research Letters</i> , 1994 , 21, 1623-1626	4.9	54
28	Tropospheric HONO and reactions of oxides of nitrogen with NaCl. <i>Geophysical Research Letters</i> , 1994 , 21, 2291-2294	4.9	15
27	A Diffuse Reflectance Infrared Fourier Transform Spectroscopic Study of the Surface Reaction of NaCl with Gaseous NO2 and HNO3. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 3747-3755		139
26	Interactions of monolayers of unsaturated phosphocholines with ozone at the air-water interface. <i>Langmuir</i> , 1994 , 10, 4637-4644	4	63
25	Comment on Indications of photochemical histories of Pacific air masses from measurements of atmospheric trace species at Point Arena, California Dy D. D. Parrish et al <i>Journal of Geophysical Research</i> , 1993 , 98, 14991		33
24	A new dark source of the gaseous hydroxyl radical for relative rate measurements. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 1172-1177		33
23	Chlorine atoms as a potential tropospheric oxidant in the marine boundary layer. <i>Research on Chemical Intermediates</i> , 1993 , 19, 235-249	2.8	151
22	Kinetics of the gas-phase reaction of hydroxyl with nitryl chloride from 259 to 348 K. <i>The Journal of Physical Chemistry</i> , 1992 , 96, 2568-2572		4
21	Kinetics of the reactions of OH with methyl chloroform and methane: Implications for global tropospheric OH and the methane budget. <i>Geophysical Research Letters</i> , 1992 , 19, 1371-1374	4.9	27
20	Absorption cross sections for gaseous ClNO2 and Cl2 at 298 K: Potential organic oxidant source in the marine troposphere. <i>Journal of Geophysical Research</i> , 1992 , 97, 7651		32
19	Comment on "A study of the stability of methanol-fueled vehicle emissions in Tedlar bags". <i>Environmental Science & Environmental Science & Environmen</i>	10.3	4
18	Formation of gas-phase bromine compounds by reaction of solid sodium bromide with gaseous nitryl hypochlorite, chlorine and chlorine bromide at 298 K. <i>The Journal of Physical Chemistry</i> , 1991 , 95, 6951-6958		21
17	Reactions of dinitrogen pentoxide and nitrogen dioxide with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. <i>Lipids</i> , 1991 , 26, 306-14	1.6	19
16	The reaction of gaseous N2O5 with solid NaCl at 298 K: Estimated lower limit to the reaction probability and its potential role in tropospheric and stratospheric chemistry. <i>Geophysical Research Letters</i> , 1991 , 18, 17-20	4.9	59
15	Effects of Ozone Combined with Components of Acid Fogs on Breathing Pattern, Metabolic Rate, Pulmonary Surfactant Composition, and Lung Injury in Rats. <i>Inhalation Toxicology</i> , 1991 , 3, 1-25	2.7	13

LIST OF PUBLICATIONS

14	Ozone destruction and bromine photochemistry at ground level in the Arctic spring. <i>Nature</i> , 1990 , 343, 622-625	50.4	180
13	Formation of secondary ozonides from the reaction of an unsaturated phosphatidylcholine with ozone. <i>Chemical Research in Toxicology</i> , 1990 , 3, 517-23	4	33
12	Synthesis and identification by infrared spectroscopy of gaseous nitryl bromide, BrNO2. <i>The Journal of Physical Chemistry</i> , 1989 , 93, 4397-4400		35
11	Formation of chemically active chlorine compounds by reactions of atmospheric NaCl particles with gaseous N2O5 and ClONO2. <i>Nature</i> , 1989 , 337, 241-244	50.4	349
10	Reaction of hydroxyl with nitrosyl chloride: kinetics and mechanisms. <i>The Journal of Physical Chemistry</i> , 1987 , 91, 2377-2382		9
9	A Fourier transform infrared spectrometry study of the reactions of phosphatidylcholines with gaseous N2O5 and NO2. <i>Toxicology and Applied Pharmacology</i> , 1987 , 89, 438-48	4.6	15
8	Temperature dependence of the hydroxyl + nitrosyl chloride (ClNO) reaction: evidence for two competing reaction channels. <i>The Journal of Physical Chemistry</i> , 1986 , 90, 17-19		11
7	Kinetics of interaction of vibrationally excited OH(X2I)v=9 with simple hydrocarbons at room temperature. <i>International Journal of Chemical Kinetics</i> , 1985 , 17, 613-628	1.4	
6	Relative rate constants for removal of vibrationally excited OH(X2I)v=9 by some small molecules at room temperature. <i>International Journal of Chemical Kinetics</i> , 1983 , 15, 151-165	1.4	9
5	Reaction of NO2 with NaCl and atmospheric implications of NOCl formation. <i>Nature</i> , 1983 , 306, 676-67	750.4	144
4	Interaction of gas-phase deuterium atoms with silica surfaces. <i>The Journal of Physical Chemistry</i> , 1982 , 86, 3499-3501		6
3	A simple titration technique for determining atomic hydrogen concentrations in fast flow discharge systems. <i>Chemical Physics Letters</i> , 1979 , 61, 300-306	2.5	7
2	Phase, composition and growth mechanism for secondary organic aerosol from the ozonolysis of æedre	ene	1
1	Effects of the VACES particle concentrator on secondary organic aerosol and ambient particle composition. <i>Aerosol Science and Technology</i> ,1-22	3.4	