
Jinshui zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9407242/publications.pdf Version: 2024-02-01

INSHILL ZHANC

#	Article	IF	CITATIONS
1	Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution Under Visible Light. Advanced Materials, 2013, 25, 2452-2456.	11.1	2,227
2	Synthesis of a Carbon Nitride Structure for Visibleâ€Light Catalysis by Copolymerization. Angewandte Chemie - International Edition, 2010, 49, 441-444.	7.2	1,312
3	Fe-g-C ₃ N ₄ -Catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible Light. Journal of the American Chemical Society, 2009, 131, 11658-11659.	6.6	962
4	Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications. Energy and Environmental Science, 2015, 8, 3092-3108.	15.6	893
5	Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. Journal of Materials Chemistry, 2012, 22, 8083.	6.7	876
6	Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nature Communications, 2012, 3, .	5.8	846
7	Layered Nanojunctions for Hydrogenâ€Evolution Catalysis. Angewandte Chemie - International Edition, 2013, 52, 3621-3625.	7.2	793
8	Coâ€Monomer Control of Carbon Nitride Semiconductors to Optimize Hydrogen Evolution with Visible Light. Angewandte Chemie - International Edition, 2012, 51, 3183-3187.	7.2	744
9	Sulfur-mediated synthesis of carbon nitride: Band-gap engineering and improved functions for photocatalysis. Energy and Environmental Science, 2011, 4, 675-678.	15.6	704
10	Nanospherical Carbon Nitride Frameworks with Sharp Edges Accelerating Charge Collection and Separation at a Soft Photocatalytic Interface. Advanced Materials, 2014, 26, 4121-4126.	11.1	691
11	Boron―and Fluorineâ€Containing Mesoporous Carbon Nitride Polymers: Metalâ€Free Catalysts for Cyclohexane Oxidation. Angewandte Chemie - International Edition, 2010, 49, 3356-3359.	7.2	643
12	A Facile Band Alignment of Polymeric Carbon Nitride Semiconductors to Construct Isotype Heterojunctions. Angewandte Chemie - International Edition, 2012, 51, 10145-10149.	7.2	632
13	Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution. Journal of Materials Chemistry, 2011, 21, 13032.	6.7	426
14	Synthesis of Carbon Nitride Semiconductors in Sulfur Flux for Water Photoredox Catalysis. ACS Catalysis, 2012, 2, 940-948.	5.5	397
15	Condensed Graphitic Carbon Nitride Nanorods by Nanoconfinement: Promotion of Crystallinity on Photocatalytic Conversion. Chemistry of Materials, 2011, 23, 4344-4348.	3.2	393
16	Sol Processing of Conjugated Carbon Nitride Powders for Thinâ€Film Fabrication. Angewandte Chemie - International Edition, 2015, 54, 6297-6301.	7.2	354
17	An Optimized and General Synthetic Strategy for Fabrication of Polymeric Carbon Nitride Nanoarchitectures. Advanced Functional Materials, 2013, 23, 3008-3014.	7.8	343
18	Molecular doping of carbon nitride photocatalysts with tunable bandgap and enhanced activity. Journal of Catalysis, 2014, 310, 24-30.	3.1	276

#	Article	IF	CITATIONS
19	Photocatalytic oxidation of water by polymeric carbon nitride nanohybrids made of sustainable elements. Chemical Science, 2012, 3, 443-446.	3.7	246
20	A Sacrificial Coating Strategy Toward Enhancement of Metal–Support Interaction for Ultrastable Au Nanocatalysts. Journal of the American Chemical Society, 2016, 138, 16130-16139.	6.6	217
21	A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization. Chemical Communications, 2016, 52, 144-147.	2.2	206
22	Porous Liquids: A Promising Class of Media for Gas Separation. Angewandte Chemie - International Edition, 2015, 54, 932-936.	7.2	191
23	Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation. Journal of the American Chemical Society, 2017, 139, 8846-8854.	6.6	181
24	Molecular and textural engineering of conjugated carbon nitride catalysts for selective oxidation of alcohols with visible light. Chemical Science, 2013, 4, 3244.	3.7	176
25	Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nature Communications, 2019, 10, 1611.	5.8	168
26	Electro- and Photochemical Water Oxidation on Ligand-free Co ₃ O ₄ Nanoparticles with Tunable Sizes. ACS Catalysis, 2013, 3, 383-388.	5.5	167
27	Total Oxidation of Propane over a Ru/CeO ₂ Catalyst at Low Temperature. Environmental Science & Technology, 2018, 52, 9531-9541.	4.6	165
28	On‧urface Polymerization of Inâ€Plane Highly Ordered Carbon Nitride Nanosheets toward Photocatalytic Mineralization of Mercaptan Gas. Advanced Materials, 2021, 33, e2101466.	11.1	130
29	Surfactantâ€Assisted Stabilization of Au Colloids on Solids for Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2017, 56, 4494-4498.	7.2	129
30	Mesoporous Graphitic Carbon Nitride as a Heterogeneous Visible Light Photoinitiator for Radical Polymerization. ACS Macro Letters, 2012, 1, 546-549.	2.3	122
31	Hypercrosslinked Phenolic Polymers with Wellâ€Developed Mesoporous Frameworks. Angewandte Chemie - International Edition, 2015, 54, 4582-4586.	7.2	119
32	Photocatalytic activation of peroxymonosulfate by carbon quantum dots functionalized carbon nitride for efficient degradation of bisphenol A under visible-light irradiation. Chemical Engineering Journal, 2021, 424, 130296.	6.6	118
33	Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures. Nano Letters, 2015, 15, 3398-3402.	4.5	115
34	Solar Water Splitting at <i>λ</i> =600â€nm: A Step Closer to Sustainable Hydrogen Production. Angewandte Chemie - International Edition, 2015, 54, 7230-7232.	7.2	98
35	Mesoporous Carbon Nitrideâ€Tungsten Oxide Composites for Enhanced Photocatalytic Hydrogen Evolution. ChemSusChem, 2015, 8, 1404-1410.	3.6	98
36	Core-shell Si@TiO2 nanosphere anode by atomic layer deposition for Li-ion batteries. Journal of Power Sources, 2016, 308, 75-82.	4.0	93

#	Article	IF	CITATIONS
37	Tire-derived carbon composite anodes for sodium-ion batteries. Journal of Power Sources, 2016, 316, 232-238.	4.0	85
38	Titania–Samarium–Manganese Composite Oxide for the Low-Temperature Selective Catalytic Reduction of NO with NH ₃ . Environmental Science & Technology, 2020, 54, 2530-2538.	4.6	75
39	Nanosheet-assembled LaMnO3@NiCo2O4 nanoarchitecture growth on Ni foam for high power density supercapacitors. Electrochimica Acta, 2019, 318, 651-659.	2.6	70
40	Efficient degradation of tetracycline hydrochloride by photocatalytic ozonation over Bi2WO6. Chemosphere, 2021, 283, 131256.	4.2	69
41	Tailored poly-heptazine units in carbon nitride for activating peroxymonosulfate to degrade organic contaminants with visible light. Applied Catalysis B: Environmental, 2022, 311, 121341.	10.8	68
42	Synthesis, characterization and photocatalytic activity of β-Ga2O3 nanostructures. Powder Technology, 2010, 203, 440-446.	2.1	65
43	Electrostaticâ€Assisted Liquefaction of Porous Carbons. Angewandte Chemie - International Edition, 2017, 56, 14958-14962.	7.2	56
44	Mesoporous Carbon Materials with Functional Compositions. Chemistry - A European Journal, 2017, 23, 1986-1998.	1.7	56
45	Membraneâ€Based Gas Separation Accelerated by Hollow Nanosphere Architectures. Advanced Materials, 2017, 29, 1603797.	11.1	48
46	Photocatalytic H2 evolution integrated with selective amines oxidation promoted by NiS2 decorated CdS nanosheets. Journal of Catalysis, 2021, 400, 347-354.	3.1	48
47	Molten salt assisted assembly growth of atomically thin boron carbon nitride nanosheets for photocatalytic H ₂ evolution. Chemical Communications, 2020, 56, 2558-2561.	2.2	40
48	Unique functionalities of carbon shells coating on ZnFe2O4 for enhanced photocatalytic hydroxylation of benzene to phenol. Applied Catalysis B: Environmental, 2022, 304, 120999.	10.8	37
49	Electrostaticâ€Assisted Liquefaction of Porous Carbons. Angewandte Chemie, 2017, 129, 15154-15158.	1.6	32
50	lonic liquid-mediated synthesis of meso-scale porous lanthanum-transition-metal perovskites with high CO oxidation performance. Chemical Communications, 2015, 51, 5910-5913.	2.2	30
51	Selective Hydroxylation of Benzene to Phenol over Fe Nanoparticles Encapsulated within N-Doped Carbon Shells. ACS Applied Nano Materials, 2020, 3, 9192-9199.	2.4	29
52	Photocatalytic hydroxylation of benzene to phenol over organosilane-functionalized FeVO ₄ nanorods. Catalysis Science and Technology, 2021, 11, 5931-5937.	2.1	25
53	Chemical Synthesis and Applications of Graphitic Carbon Nitride. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2013, 29, 1865-1876.	2.2	23
54	Nanoconfined Growth of Carbon-Encapsulated Cobalts as Cocatalysts for Photocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 14023-14030.	3.2	23

#	Article	IF	CITATIONS
55	Modification of Carbon Nitride Photocatalysts by Copolymerization with Diaminomaleonitrile. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2012, 28, 2336-2342.	2.2	22
56	Porous Structure Design of Polymeric Membranes for Gas Separation. Small Methods, 2017, 1, 1600051.	4.6	21
57	Photodeposited CoO as highly active phases to boost water oxidation on BiVO4/WO3 photoanode. International Journal of Hydrogen Energy, 2019, 44, 25652-25661.	3.8	21
58	Enhanced Photocatalytic Ozonation of Phenol by Ag/ZnO Nanocomposites. Catalysts, 2019, 9, 1006.	1.6	21
59	"Cooking carbon in a solid salt― Synthesis of porous heteroatom-doped carbon foams for enhanced organic pollutant degradation under visible light. Applied Materials Today, 2018, 12, 168-176.	2.3	19
60	Surfactantâ€Assisted Stabilization of Au Colloids on Solids for Heterogeneous Catalysis. Angewandte Chemie, 2017, 129, 4565-4569.	1.6	18
61	Efficient photoelectrochemical hydrogen production over p-Si nanowire arrays coupled with molybdenum–sulfur clusters. International Journal of Hydrogen Energy, 2017, 42, 2832-2838.	3.8	18
62	Atomistic Observation of Temperature-Dependent Defect Evolution within Sub-stoichiometric WO _{3–<i>x</i>} Catalysts. ACS Applied Materials & Interfaces, 2022, 14, 2194-2201.	4.0	14
63	Carbon/tin oxide composite electrodes for improved lithium-ion batteries. Journal of Applied Electrochemistry, 2018, 48, 811-817.	1.5	13
64	Carbon encapsulated bimetallic FeCo nanoalloys for one-step hydroxylation of benzene to phenol. Applied Catalysis A: General, 2022, 633, 118499.	2.2	12
65	Tuning regioselective oxidation toward phenol via atomically dispersed iron sites on carbon. Green Chemistry, 2020, 22, 6025-6032.	4.6	9
66	Hierarchically Superstructured Metal Sulfides: Facile Perturbationâ€Assisted Nanofusion Synthesis and Visible Light Photocatalytic Characterizations. ChemNanoMat, 2016, 2, 1104-1110.	1.5	8
67	Fibers with Hyperâ€Crosslinked Functional Porous Frameworks. Macromolecular Rapid Communications, 2018, 39, 1700767.	2.0	8
68	An ultrathin TiO ₂ interfacial layer enhancing the performance of an FeVO ₄ photoanode for water splitting. Sustainable Energy and Fuels, 2021, 5, 261-266.	2.5	8
69	Molecular pore-wall engineering of mesozeolitic conjugated polymers for photoredox hydrogen production with visible light. Journal of Energy Chemistry, 2017, 26, 87-92.	7.1	7
70	Carbon-coated ZnFe2O4 nanoparticles as an efficient, robust and recyclable catalyst for photocatalytic ozonation of organic pollutants. Journal of Environmental Chemical Engineering, 2022, 10, 107419.	3.3	7
71	Controlled synthesis of mesoporous codoped titania nanoparticles and their photocatalytic activity. Advances in Nano Research, 2016, 4, 157-165.	0.9	5
72	Bioinspired cobalt cubanes with tunable redox potentials for photocatalytic water oxidation and CO ₂ reduction. Beilstein Journal of Organic Chemistry, 2018, 14, 2331-2339.	1.3	4

#	Article	IF	CITATIONS
73	Low-Temperature NH3-SCR on Cex-Mn-Tiy Mixed Oxide Catalysts: Improved Performance by the Mutual Effect between Ce and Ti. Catalysts, 2022, 12, 471.	1.6	4
74	An Amphiphilic Mesoporous Poly(ionic liquid) Material with Efficient Removal Capability of Anionic Dyes. Chemistry Letters, 2018, 47, 913-915.	0.7	3
75	A Highly Crystallized Hexagonal BCN Photocatalyst with Superior Anticorrosion Properties. Advanced Optical Materials, 0, , 2200282.	3.6	3
76	Facile fabrication of oxygen-doped carbon nitride with enhanced visible-light photocatalytic degradation of methyl mercaptan. Research on Chemical Intermediates, 2022, 48, 2295-2311.	1.3	3
77	Influence of Pt Promoter on the Visible Light Photocatalytic Properties of N-Doped TiO ₂ . Chinese Journal of Catalysis, 2011, 32, 100-105.	6.9	2