Chun Hong Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9406976/publications.pdf

Version: 2024-02-01

393982 395343 1,131 54 19 33 citations g-index h-index papers 55 55 55 1119 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication. Light: Science and Applications, 2019, 8, 94.	7.7	225
2	A Review on Practical Considerations and Solutions in Underwater Wireless Optical Communication. Journal of Lightwave Technology, 2020, 38, 421-431.	2.7	126
3	Light based underwater wireless communications. Japanese Journal of Applied Physics, 2018, 57, 08PA06.	0.8	89
4	Deep-Ultraviolet Photodetection Using Single-Crystalline β-Ga ₂ O ₃ /NiO Heterojunctions. ACS Applied Materials & Interfaces, 2019, 11, 35095-35104.	4.0	75
5	Ultraviolet-to-blue color-converting scintillating-fibers photoreceiver for 375-nm laser-based underwater wireless optical communication. Optics Express, 2019, 27, 30450.	1.7	52
6	High-power blue superluminescent diode for high CRI lighting and high-speed visible light communication. Optics Express, 2018, 26, 26355.	1.7	44
7	On the realization of across wavy water-air-interface diffuse-line-of-sight communication based on an ultraviolet emitter. Optics Express, 2019, 27, 19635.	1.7	42
8	Semipolar ($2021~\hat{A}^-$) InGaN/GaN micro-photodetector for gigabit-per-second visible light communication. Applied Physics Express, 2020, 13, 014001.	1.1	39
9	Deep-ultraviolet integrated photonic and optoelectronic devices: A prospect of the hybridization of group Ill–nitrides, Ill–oxides, and two-dimensional materials. Journal of Semiconductors, 2019, 40, 121801.	2.0	33
10	A flexible capacitive photoreceptor for the biomimetic retina. Light: Science and Applications, 2022, 11, 3.	7.7	33
11	Survey of energy-autonomous solar cell receivers for satellite–air–ground–ocean optical wireless communication. Progress in Quantum Electronics, 2020, 74, 100300.	3 . 5	32
12	Gbit/s ultraviolet-C diffuse-line-of-sight communication based on probabilistically shaped DMT and diversity reception. Optics Express, 2020, 28, 9111.	1.7	29
13	Perovskite-Based Artificial Multiple Quantum Wells. Nano Letters, 2019, 19, 3535-3542.	4.5	27
14	Toward self-powered and reliable visible light communication using amorphous silicon thin-film solar cells. Optics Express, 2019, 27, 34542.	1.7	27
15	Unleashing the potential of molecular beam epitaxy grown AlGaN-based ultraviolet-spectrum nanowires devices. Journal of Nanophotonics, 2018, 12, 1.	0.4	24
16	Metal–Organic Frameworks in Mixed-Matrix Membranes for High-Speed Visible-Light Communication. Journal of the American Chemical Society, 2022, 144, 6813-6820.	6.6	23
17	Carbon nanotube-graphene composite film as transparent conductive electrode for GaN-based light-emitting diodes. Applied Physics Letters, 2016, 109, .	1.5	20
18	AquaE-lite Hybrid-Solar-Cell Receiver-Modality for Energy-Autonomous Terrestrial and Underwater Internet-of-Things. IEEE Photonics Journal, 2020, 12, 1-13.	1.0	20

#	Article	IF	Citations
19	Group-III-nitride and halide-perovskite semiconductor gain media for amplified spontaneous emission and lasing applications. Journal Physics D: Applied Physics, 2021, 54, 143001.	1.3	20
20	Real-Time Optical-Wireless Video Surveillance System for High Visual-Fidelity Underwater Monitoring. IEEE Photonics Journal, 2022, 14, 1-9.	1.0	20
21	All-inorganic halide-perovskite polymer-fiber-photodetector for high-speed optical wireless communication. Optics Express, 2022, 30, 9823.	1.7	19
22	Toward Large-Scale Ga ₂ O ₃ Membranes via Quasi-Van Der Waals Epitaxy on Epitaxial Graphene Layers. ACS Applied Materials & Samp; Interfaces, 2021, 13, 13410-13418.	4.0	17
23	Single-Crystalline All-Oxide α–γ–β Heterostructures for Deep-Ultraviolet Photodetection. ACS Applied Materials & Deep (1975) amp; Interfaces, 2020, 12, 53932-53941.	4.0	14
24	7.4-Gbit/s Visible-Light Communication Utilizing Wavelength-Selective Semipolar Micro-Photodetector. IEEE Photonics Technology Letters, 2020, , 1-1.	1.3	11
25	Heteroepitaxial βâ€Ga ₂ O ₃ on Conductive Ceramic Templates: Toward Ultrahigh Gain Deepâ€Ultraviolet Photodetection. Advanced Materials Technologies, 2021, 6, 2100142.	3.0	10
26	Toward Automatic Subsea Operations Using Real-Time Underwater Optical Wireless Sensor Networks. IEEE Photonics Journal, 2022, 14, 1-8.	1.0	8
27	Chlorine-Infused Wide-Band Gap p-CuSCN/n-GaN Heterojunction Ultraviolet-Light Photodetectors. ACS Applied Materials & Diterfaces, 2022, 14, 17889-17898.	4.0	8
28	Two-Dimensional Hybrid Organic-Inorganic Perovskite Nanosheets for Gb/s Visible-Light Communication. IEEE Photonics Technology Letters, 2022, 34, 753-756.	1.3	7
29	DNA/AuNP-graphene back-gated field effect transistor as a biosensor for lead (II) ion detection. , 2017, , .		5
30	Characterization of epitaxial titanium nitride mediated single-crystal nickel oxide grown on MgO-(100) and Si-(100). AIP Advances, 2020, 10, 065318.	0.6	4
31	Colloidal PbS Quantum Dots for Visible-to-Near-Infrared Optical Internet of Things. IEEE Photonics Journal, 2021, 13, 1-11.	1.0	4
32	A tutorial on laser-based lighting and visible light communications: device and technology [Invited]. Chinese Optics Letters, 2019, 17, 040601.	1.3	4
33	Silicon-integrated monocrystalline oxide–nitride heterostructures for deep-ultraviolet optoelectronics. Optical Materials Express, 2021, 11, 4130.	1.6	4
34	Electrical characterization of solar-blind deep-ultraviolet (Al0.28Ga0.72)2O3 Schottky photodetectors grown on silicon by pulsed laser deposition. , 2019, , .		3
35	Underwater optical wireless sensor network for real-time underwater environmental monitoring. , 2022, , .		3
36	Red to Near-Infrared Emission from InGaN/GaN Quantum-Disks-in-Nanowires LED., 2014,,.		2

#	Article	IF	CITATIONS
37	Giant clam inspired high-speed photo-conversion for ultraviolet optical wireless communication. Optical Materials Express, 2021, 11, 1515.	1.6	2
38	Automated train track misalignment detection system based on inertia measurement unit., 2014,,.		1
39	Graphene-based hybrid thin films as transparent conductive electrode for optoelectronic devices. , $2016,$, .		1
40	Deep-Ultraviolet \hat{l}^2 -Ga2O3Photodetectors Grown on MgO Substrates with a TiN Template. , 2019, , .		1
41	High-Speed Ultraviolet-C Photodetector Based on Frequency Down-Converting CsPbBr3 Perovskite Nanocrystals on Silicon Platform. , 2019, , .		1
42	Blue Superluminescent Diodes with GHz Bandwidth Exciting Perovskite Nanocrystals for High CRI White Lighting and High-Speed VLC. , 2019, , .		1
43	Epitaxial growth of [beta]-Ga2O3/[epsilon]-Ga2O3 polymorphic heterostructures on c-plane sapphire for deep-ultraviolet optoelectronics. , 2020, , .		1
44	Synthesis parameters and transfer techniques of mono-few layer graphene for transparent conductive electrode. , $2016, , .$		0
45	Facile Formation of Interconnected Multi-Walled Carbon Nanotube-Graphene Nanocomposite for Nanoelectronics Applications. Key Engineering Materials, 0, 744, 433-437.	0.4	0
46	Au-decorated graphene-carbon nanotube hybrid thin film for sub-100 ohm/sq transparent conductive electrodes. , 2017, , .		0
47	Blue Superluminescent Diode on c-Plane GaN Beyond Gigahertz Modulation Bandwidth for Visible Light Communication. , 2019, , .		0
48	Heteroepitaxial βâ€Ga ₂ O ₃ on Conductive Ceramic Templates: Toward Ultrahigh Gain Deepâ€Ultraviolet Photodetection (Adv. Mater. Technol. 9/2021). Advanced Materials Technologies, 2021, 6, 2170052.	3.0	0
49	Mesa-height Dependent Quantum Efficiency Characteristics of InGaN Micro-LEDs., 2013,,.		0
50	Mesa-height Dependent Quantum Efficiency Characteristics of InGaN Micro-LEDs., 2013,,.		0
51	1.5-Gbit/s Filter-free Optical Communication Link based on Wavelength-selective Semipolar ($20\ 21\ \hat{A}^-$) InGaN/GaN Micro-photodetector. , 2020, , .		0
52	All-inorganic halide-perovskite-polymer luminescent fibers for high-bitrate ultraviolet free-space optical communication. , 2021, , .		0
53	Ultralow-power deep-ultraviolet photodetection using oxide-nitride heterojunctions integrated on silicon. , 2022, , .		0
54	Wide-field-of-view Perovskite Quantum-dots Fibers Array for Easing Pointing, Acquisition and Tracking in Underwater Wireless Optical Communication. , 2022, , .		0