
## Natalia Shirokova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9406674/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | RyR1 S-Nitrosylation Underlies Environmental Heat Stroke and Sudden Death in Y522S RyR1 Knockin<br>Mice. Cell, 2008, 133, 53-65.                                                                      | 13.5 | 321       |
| 2  | Amplitude Distribution of Calcium Sparks in Confocal Images: Theory and Studies with an Automatic Detection Method. Biophysical Journal, 1999, 76, 606-617.                                           | 0.2  | 272       |
| 3  | Local calcium release in mammalian skeletal muscle. Journal of Physiology, 1998, 512, 377-384.                                                                                                        | 1.3  | 130       |
| 4  | Involvement of multiple intracellular release channels in calcium sparks of skeletal muscle.<br>Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 4380-4385. | 3.3  | 125       |
| 5  | Dystrophic cardiomyopathy: amplification of cellular damage by Ca2+ signalling and reactive oxygen species-generating pathways. Cardiovascular Research, 2008, 77, 766-773.                           | 1.8  | 124       |
| 6  | Cardiac phenotype of Duchenne Muscular Dystrophy: Insights from cellular studies. Journal of<br>Molecular and Cellular Cardiology, 2013, 58, 217-224.                                                 | 0.9  | 98        |
| 7  | Reciprocal amplification of ROS and Ca2+ signals in stressed mdx dystrophic skeletal muscle fibers.<br>Pflugers Archiv European Journal of Physiology, 2009, 458, 915-928.                            | 1.3  | 95        |
| 8  | Transfer and Tunneling of Ca2+ from Sarcoplasmic Reticulum to Mitochondria in Skeletal Muscle.<br>Journal of Biological Chemistry, 2006, 281, 1547-1554.                                              | 1.6  | 87        |
| 9  | Mitochondrial redox state and Ca2+sparks in permeabilized mammalian skeletal muscle. Journal of<br>Physiology, 2005, 565, 855-872.                                                                    | 1.3  | 84        |
| 10 | The Spark and Its Ember. Journal of General Physiology, 2000, 115, 139-158.                                                                                                                           | 0.9  | 82        |
| 11 | Small event Ca2+release: a probable precursor of Ca2+sparks in frog skeletal muscle. Journal of Physiology, 1997, 502, 3-11.                                                                          | 1.3  | 76        |
| 12 | Calcium Release Flux Underlying Ca2+ Sparks of Frog Skeletal Muscle. Journal of General Physiology,<br>1999, 114, 31-48.                                                                              | 0.9  | 74        |
| 13 | Posttranslational modifications of cardiac ryanodine receptors: Ca2+ signaling and EC-coupling.<br>Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 866-875.                      | 1.9  | 69        |
| 14 | Pathways of abnormal stress-induced Ca2+ influx into dystrophic mdx cardiomyocytes. Cell Calcium,<br>2009, 46, 114-121.                                                                               | 1.1  | 68        |
| 15 | Reactive oxygen species contribute to Ca <sup>2+</sup> signals produced by osmotic stress in mouse skeletal muscle fibres. Journal of Physiology, 2008, 586, 197-210.                                 | 1.3  | 66        |
| 16 | Spatially segregated control of Ca2+release in developing skeletal muscle of mice. Journal of Physiology, 1999, 521, 483-495.                                                                         | 1.3  | 59        |
| 17 | A guide to sparkology: The taxonomy of elementary cellular Ca2+ signaling events. Cell Calcium, 2007,<br>42, 379-387.                                                                                 | 1.1  | 59        |
| 18 | Ca(2+)-dependent inactivation of cardiac L-type Ca2+ channels does not affect their voltage sensor<br>Journal of General Physiology, 1993, 102, 1005-1030.                                            | 0.9  | 56        |

NATALIA SHIROKOVA

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Two classes of gating current from L-type Ca channels in guinea pig ventricular myocytes Journal of<br>General Physiology, 1992, 99, 863-895.                                                                  | 0.9 | 55        |
| 20 | Prevention of connexin-43 remodeling protects against Duchenne muscular dystrophy cardiomyopathy. Journal of Clinical Investigation, 2020, 130, 1713-1727.                                                     | 3.9 | 52        |
| 21 | Metabolic Regulation of Ca 2+ Release in Permeabilized Mammalian Skeletal Muscle Fibres. Journal of<br>Physiology, 2003, 547, 453-462.                                                                         | 1.3 | 51        |
| 22 | S-nitrosylation of connexin43 hemichannels elicits cardiac stress–induced arrhythmias in Duchenne<br>muscular dystrophy mice. JCI Insight, 2019, 4, .                                                          | 2.3 | 50        |
| 23 | Hypersensitivity of excitation-contraction coupling in dystrophic cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1992-H2003.                                   | 1.5 | 49        |
| 24 | Calcium Sparks: Release Packets of Uncertain Origin and Fundamental Role. Journal of General<br>Physiology, 1999, 113, 377-384.                                                                                | 0.9 | 46        |
| 25 | Hierarchical accumulation of RyR post-translational modifications drives disease progression in dystrophic cardiomyopathy. Cardiovascular Research, 2013, 97, 666-675.                                         | 1.8 | 45        |
| 26 | Mitochondrial dysfunctions during progression of dystrophic cardiomyopathy. Cell Calcium, 2015, 58, 186-195.                                                                                                   | 1.1 | 45        |
| 27 | Fast imaging in two dimensions resolves extensive sources of Ca 2+ sparks in frog skeletal muscle.<br>Journal of Physiology, 2000, 528, 419-433.                                                               | 1.3 | 42        |
| 28 | Pivotal role of miR-448 in the development of ROS-induced cardiomyopathy. Cardiovascular Research, 2015, 108, 324-334.                                                                                         | 1.8 | 41        |
| 29 | Type 1 Inositol (1,4,5)-Trisphosphate Receptor Activates Ryanodine Receptor 1 to Mediate Calcium Spark<br>Signaling in Adult Mammalian Skeletal Muscle. Journal of Biological Chemistry, 2013, 288, 2103-2109. | 1.6 | 39        |
| 30 | Deficit in PINK1/PARKIN-mediated mitochondrial autophagy at late stages of dystrophic cardiomyopathy. Cardiovascular Research, 2018, 114, 90-102.                                                              | 1.8 | 39        |
| 31 | â€~Quantal' calcium release operated by membrane voltage in frog skeletal muscle. Journal of<br>Physiology, 1997, 501, 289-303.                                                                                | 1.3 | 29        |
| 32 | <i>G</i> <sub>αq</sub> Sensitizes TRPM8 to Inhibition by PI(4,5)P <sub>2</sub> Depletion upon Receptor<br>Activation. Journal of Neuroscience, 2019, 39, 6067-6080.                                            | 1.7 | 15        |
| 33 | Normalization of connexin 43 protein levels prevents cellular and functional signs of dystrophic cardiomyopathy in mice. Neuromuscular Disorders, 2018, 28, 361-372.                                           | 0.3 | 13        |
| 34 | Studies of RyR function in situ. Methods, 2008, 46, 183-193.                                                                                                                                                   | 1.9 | 9         |
| 35 | Small Fractions of Muscular Dystrophy Embryonic Stem Cells Yield Severe Cardiac and Skeletal<br>Muscle Defects in Adult Mouse Chimeras. Stem Cells, 2017, 35, 597-610.                                         | 1.4 | 9         |
| 36 | Changes of EC-coupling and RyR Calcium Sensitivity in Dystrophic mdx Mouse Cardiomyocytes.<br>Biophysical Journal, 2009, 96, 10a-11a.                                                                          | 0.2 | 2         |

| #  | Article                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Insights into RyRs Dysfunctions via Studies of Intracellular Calcium Signals. Biophysical Journal, 2012, 102, 213a. | 0.2 | 1         |
| 38 | Ca2+ sparks – SOS signals of struggling muscle. , 2006, , 27-28.                                                    |     | 0         |
| 39 | Caged Compounds: Applications in Cardiac Muscle Research. , 2018, , 75-95.                                          |     | 0         |