
Matthew R Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9406125/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epithelial LIF signaling limits apoptosis and lung injury during bacterial pneumonia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L550-L563.	1.3	5
2	Neutrophil Extracellular Traps as an Exacerbating Factor in Bacterial Pneumonia. Infection and Immunity, 2022, 90, IAI0049121.	1.0	6
3	Recruitment and training of alveolar macrophages after pneumococcal pneumonia. JCI Insight, 2022, 7, ·	2.3	12
4	Lung-resident memory B cells protect against bacterial pneumonia. Journal of Clinical Investigation, 2021, 131, .	3.9	62
5	Liver-Dependent Lung Remodeling during Systemic Inflammation Shapes Responses to Secondary Infection. Journal of Immunology, 2021, 207, 1891-1902.	0.4	3
6	Antigen presentation by lung epithelial cells directs CD4+ TRM cell function and regulates barrier immunity. Nature Communications, 2021, 12, 5834.	5.8	58
7	Lung CD4+ resident memory T cells remodel epithelial responses to accelerate neutrophil recruitment during pneumonia. Mucosal Immunology, 2020, 13, 334-343.	2.7	49
8	Unique Roles for Streptococcus pneumoniae Phosphodiesterase 2 in Cyclic di-AMP Catabolism and Macrophage Responses. Frontiers in Immunology, 2020, 11, 554.	2.2	8
9	Pneumonia recovery reprograms the alveolar macrophage pool. JCI Insight, 2020, 5, .	2.3	35
10	Roles of interleukin-11 during acute bacterial pneumonia. PLoS ONE, 2019, 14, e0221029.	1.1	18
11	NF-κB RelA Is Required for Hepatoprotection during Pneumonia and Sepsis. Infection and Immunity, 2019, 87, .	1.0	6
12	Age-Related Dopaminergic Innervation Augments T Helper 2-Type Allergic Inflammation in the Postnatal Lung. Immunity, 2019, 51, 1102-1118.e7.	6.6	53
13	Myeloid-epithelial cross talk coordinates synthesis of the tissue-protective cytokine leukemia inhibitory factor during pneumonia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L548-L558.	1.3	20
14	Capacity of Pneumococci to Activate Macrophage Nuclear Factor κB: Influence on Necroptosis and Pneumonia Severity. Journal of Infectious Diseases, 2017, 216, 425-435.	1.9	16
15	3′ Uridylation controls mature microRNA turnover during CD4 T-cell activation. Rna, 2017, 23, 882-891.	1.6	47
16	MicroRNA Signature of Cigarette Smoking and Evidence for a Putative Causal Role of MicroRNAs in Smoking-Related Inflammation and Target Organ Damage. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	45
17	The RNA uridyltransferase Zcchc6 is expressed in macrophages and impacts innate immune responses. PLoS ONE, 2017, 12, e0179797.	1.1	12
18	Expression of Piwi protein MIWI2 defines a distinct population of multiciliated cells. Journal of Clinical Investigation, 2017, 127, 3866-3876.	3.9	14

MATTHEW R JONES

#	Article	IF	CITATIONS
19	Epithelial Cell–Derived Secreted and Transmembrane 1a Signals to Activated Neutrophils during Pneumococcal Pneumonia. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 407-418.	1.4	30
20	Activation of Hepatic STAT3 Maintains Pulmonary Defense during Endotoxemia. Infection and Immunity, 2015, 83, 4015-4027.	1.0	19
21	The Lung-Liver Axis: A Requirement for Maximal Innate Immunity and Hepatoprotection during Pneumonia. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 378-390.	1.4	35
22	Induction of STAT3-Dependent CXCL5 Expression and Neutrophil Recruitment by Oncostatin-M during Pneumonia. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 479-488.	1.4	34
23	Roles of Lung Epithelium in Neutrophil Recruitment during Pneumococcal Pneumonia. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 253-262.	1.4	65
24	Myeloid ZFP36L1 Does Not Regulate Inflammation or Host Defense in Mouse Models of Acute Bacterial Infection. PLoS ONE, 2014, 9, e109072.	1.1	9
25	Roles of STAT3 in Protein Secretion Pathways during the Acute-Phase Response. Infection and Immunity, 2013, 81, 1644-1653.	1.0	25
26	Zcchc11 Uridylates Mature miRNAs to Enhance Neonatal IGF-1 Expression, Growth, and Survival. PLoS Genetics, 2012, 8, e1003105.	1.5	49
27	Leukemia Inhibitory Factor Signaling Is Required for Lung Protection during Pneumonia. Journal of Immunology, 2012, 188, 6300-6308.	0.4	65
28	Type I Alveolar Epithelial Cells Mount Innate Immune Responses during Pneumococcal Pneumonia. Journal of Immunology, 2012, 189, 2450-2459.	0.4	80
29	Hepatocyte-specific mutation of both NF-κB RelA and STAT3 abrogates the acute phase response in mice. Journal of Clinical Investigation, 2012, 122, 1758-1763.	3.9	64
30	Terminal Uridyltransferase Enzyme Zcchc11 Promotes Cell Proliferation Independent of Its Uridyltransferase Activity. Journal of Biological Chemistry, 2011, 286, 42381-42389.	1.6	19
31	Mechanisms of the Hepatic Acute-Phase Response during Bacterial Pneumonia. Infection and Immunity, 2009, 77, 2417-2426.	1.0	57
32	Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nature Cell Biology, 2009, 11, 1157-1163.	4.6	272
33	Vascular smooth muscle cell polyploidy: An adaptive or maladaptive response?. Journal of Cellular Physiology, 2008, 215, 588-592.	2.0	19
34	Alveolar Epithelial STAT3, IL-6 Family Cytokines, and Host Defense during <i>Escherichia coli</i> Pneumonia. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 699-706.	1.4	104
35	Functions and Regulation of NF-κB RelA during Pneumococcal Pneumonia. Journal of Immunology, 2007, 178, 1896-1903.	0.4	97
36	Increased polyploidy in aortic vascular smooth muscle cells during aging is marked by cellular senescence. Aging Cell, 2007, 6, 257-260.	3.0	59

MATTHEW R JONES

#	Article	IF	CITATIONS
37	Roles of Interleukinâ€6 in Activation of STAT Proteins and Recruitment of Neutrophils duringEscherichia coliPneumonia. Journal of Infectious Diseases, 2006, 193, 360-369.	1.9	94
38	The A2B adenosine receptor protects against inflammation and excessive vascular adhesion. Journal of Clinical Investigation, 2006, 116, 1913-1923.	3.9	316
39	Identification of Z11 as a novel zinc finger protein in the lungs. FASEB Journal, 2006, 20, A1443.	0.2	0
40	Conditional overexpression of transgenes in megakaryocytes and platelets in vivo. Blood, 2005, 106, 1559-1564.	0.6	24
41	Lung NF-κB Activation and Neutrophil Recruitment Require IL-1 and TNF Receptor Signaling during Pneumococcal Pneumonia. Journal of Immunology, 2005, 175, 7530-7535.	0.4	143
42	Vascular smooth muscle cell polyploidization involves changes in chromosome passenger proteins and an endomitotic cell cycle. Experimental Cell Research, 2005, 305, 277-291.	1.2	29
43	Oncostatin M causes eotaxin-1 release from airway smooth muscle: Synergy with IL-4 and IL-13. Journal of Allergy and Clinical Immunology, 2005, 115, 514-520.	1.5	47
44	Vascular Smooth Muscle Polyploidization as a Biomarker for Aging and Its Impact on Differential Gene Expression. Journal of Biological Chemistry, 2004, 279, 5306-5313.	1.6	52
45	A3 adenosine receptor deficiency does not influence atherogenesis. Journal of Cellular Biochemistry, 2004, 92, 1034-1043.	1.2	26
46	Aberrant quantity and localization of Aurora-B/AIM-1 and survivin during megakaryocyte polyploidization and the consequences of Aurora-B/AIM-1–deregulated expression. Blood, 2004, 103, 3717-3726.	0.6	69
47	An Establishment of a System for Conditional Overexpression of Genes in Megakaryocytes and Platelets In Vivo Blood, 2004, 104, 4196-4196.	0.6	0
48	Roads to polyploidy: The megakaryocyte example. Journal of Cellular Physiology, 2002, 190, 7-20.	2.0	227