Minghao Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9405975/publications.pdf

Version: 2024-02-01

192 papers 5,398 citations

94269 37 h-index 63 g-index

196 all docs

196 docs citations

196 times ranked 5527 citing authors

#	Article	IF	CITATIONS
1	Effect of point defects on the thermal transport properties of $(LaxGd1\hat{a}^*x)2Zr2O7$: Experiment and theoretical model. Physical Review B, 2006, 74, .	1.1	270
2	New Yellow-Emitting Whitlockite-type Structure Sr _{1.75} Ca _{1.25} (PO ₄) ₂ :Eu ²⁺ Phosphor for Near-UV Pumped White Light-Emitting Devices. Inorganic Chemistry, 2014, 53, 5129-5135.	1.9	258
3	Significantly Enhanced Uranium Extraction from Seawater with Mass Produced Fully Amidoximated Nanofiber Adsorbent. Advanced Energy Materials, 2018, 8, 1802607.	10.2	219
4	Ultralight, scalable, and high-temperature–resilient ceramic nanofiber sponges. Science Advances, 2017, 3, e1603170.	4.7	207
5	Discovery of New Solid Solution Phosphors via Cation Substitution-Dependent Phase Transition in M ₃ (PO ₄) ₂ :Eu ²⁺ (M = Ca/Sr/Ba) Quasi-Binary Sets. Journal of Physical Chemistry C, 2015, 119, 2038-2045.	1.5	187
6	Energy Transfer from Sm $<$ sup $>3+<$ /sup $>$ to Eu $<$ sup $>3+<$ /sup $>$ in Red-Emitting Phosphor LaMgAl $<$ sub $>11<$ /sub $>0<$ sub $>19<$ /sub $>:$ Sm $<$ sup $>3+<$ /sup $>$, Eu $<$ sup $>3+<$ /sup $>$ for Solar Cells and Near-Ultraviolet White Light-Emitting Diodes. Inorganic Chemistry, 2014, 53, 6060-6065.	1.9	133
7	Crystal structure and Temperature-Dependent Luminescence Characteristics of KMg4(PO4)3:Eu2+ phosphor for White Light-emitting diodes. Scientific Reports, 2015, 5, 9673.	1.6	109
8	Phase Transformation in Ca ₃ (PO ₄) ₂ :Eu ²⁺ via the Controlled Quenching and Increased Eu ²⁺ Content: Identification of New Cyanâ€Emitting αâ€Ca ₃ (PO ₄) ₂ :Eu ²⁺ Phosphor. Journal of the American Ceramic Society, 2015, 98, 3280-3284.	1.9	103
9	Luminescence Properties and Energy Transfer of Eu/Mn-Coactivated Mg ₂ Al ₄ Si ₅ O ₁₈ as a Potential Phosphor for White-Light LEDs. Inorganic Chemistry, 2014, 53, 11396-11403.	1.9	94
10	Red-Shifted Emission in Y ₃ MgSiAl ₃ O ₁₂ :Ce ³⁺ Garnet Phosphor for Blue Light-Pumped White Light-Emitting Diodes. Journal of Physical Chemistry C, 2018, 122, 15659-15665.	1.5	93
11	Highâ€Temperature Particulate Matter Filtration with Resilient Yttriaâ€Stabilized ZrO ₂ Nanofiber Sponge. Small, 2018, 14, e1800258.	5.2	87
12	Reversible precipitation/dissolution of precious-metal clusters in perovskite-based catalyst materials: Bulk versus surface re-dispersion. Journal of Catalysis, 2012, 293, 145-148.	3.1	86
13	Preparation and thermal properties of shape-stabilized composite phase change materials based on polyethylene glycol and porous carbon prepared from potato. RSC Advances, 2016, 6, 15821-15830.	1.7	85
14	Novel pyrochlore-type La2Zr2O7: Eu3+ red phosphors: Synthesis, structural, luminescence properties and theoretical calculation. Dyes and Pigments, 2018, 157, 47-54.	2.0	77
15	Ca ₆ La ₄ (SiO ₄) ₂ (PO ₄) ₄ O _{2<td>sub>:Eu<: 2.7</td><td>sup>2+71</td>}	sub>:Eu<: 2.7	sup>2+71
16	Effect of La 2 O 3 additives on the strength and microstructure of mullite ceramics obtained from coal gangue and \hat{I}^3 -Al 2 O 3. Ceramics International, 2013, 39, 6841-6846.	2.3	69
17	2D Metals by Repeated Size Reduction. Advanced Materials, 2016, 28, 8170-8176.	11.1	68

Crystal structure evolution and luminescence properties of color tunable solid solution phosphors

Ca_{2+x}8â°'x</sub>(SiO₄)_{6â°'x}(PO₄)_{>4})_{>2}2</sub>2</sub>2016, 45, 1007-1015.

#	Article	IF	CITATIONS
19	Preparation and characterization of carbon foams derived from aluminosilicate and phenolic resin. Carbon, 2011, 49, 1782-1786.	5.4	61
20	Ultralight and resilient Al ₂ O ₃ nanotube aerogels with low thermal conductivity. Journal of the American Ceramic Society, 2018, 101, 1677-1683.	1.9	61
21	Fe-catalyzed growth of one-dimensional α-Si3N4 nanostructures and their cathodoluminescence properties. Scientific Reports, 2013, 3, 3504.	1.6	60
22	Emission red shift and energy transfer behavior of color-tunable KMg ₄ (PO ₄) ₃ :Eu ²⁺ ,Mn ²⁺ phosphors. Journal of Materials Chemistry C, 2015, 3, 5516-5523.	2.7	59
23	Synthesis of SiC nanowires by thermal evaporation method without catalyst assistant. Ceramics International, 2013, 39, 1957-1962.	2.3	57
24	Co-catalyzed nitridation of silicon and in-situ growth of \hat{l}_{\pm} -Si3N4 nanorods. Ceramics International, 2014, 40, 11063-11070.	2.3	55
25	Surface graphited carbon scaffold enables simple and scalable fabrication of 3D composite lithium metal anode. Journal of Materials Chemistry A, 2017, 5, 19168-19174.	5 . 2	55
26	Thermal evaporation synthesis of SiC/SiO _x nanochain heterojunctions and their photoluminescence properties. Journal of Materials Chemistry C, 2014, 2, 7761-7767.	2.7	50
27	Properties and microstructure of machinable Al2O3/LaPO4 ceramic composites. Ceramics International, 2003, 29, 19-25.	2.3	48
28	Growth of α-Si ₃ N ₄ nanobelts via Ni-catalyzed thermal chemical vapour deposition and their violet-blue luminescent properties. CrystEngComm, 2013, 15, 785-790.	1.3	48
29	Synthesis of Er-doped Bi ₂ WO ₆ and enhancement in photocatalytic activity induced by visible light. RSC Advances, 2015, 5, 94887-94894.	1.7	45
30	Continuous Draw Spinning of Extra-Long Silver Submicron Fibers with Micrometer Patterning Capability. Nano Letters, 2017, 17, 1883-1891.	4.5	45
31	Luminescence Properties and Energyâ€Transfer Behavior of a Novel and Colorâ€Tunable LaMgAl ₁₁ O ₁₉ :Tm ³⁺ , Dy ³⁺ Phosphor for White Lightâ€Emitting Diodes. Journal of the American Ceramic Society, 2015, 98, 788-794.	1.9	43
32	Luminescence and energy transfer of a color tunable phosphor: Tb ³⁺ and Eu ³⁺ co-doped ScPO ₄ . RSC Advances, 2016, 6, 28887-28894.	1.7	42
33	Preparation and luminescent properties of orange reddish emitting phosphor LaMgAl11O19:Sm3+. Optical Materials, 2014, 37, 110-114.	1.7	41
34	Large-scale blow spinning of heat-resistant nanofibrous air filters. Nano Research, 2020, 13, 861-867.	5.8	41
35	Highly Flexible Indium Tin Oxide Nanofiber Transparent Electrodes by Blow Spinning. ACS Applied Materials & Diterfaces, 2016, 8, 32661-32666.	4.0	40
36	Mechanical and thermal properties of LaMgAl11O19. Materials Research Bulletin, 2010, 45, 1506-1508.	2.7	39

#	Article	IF	CITATIONS
37	Catalyst-assisted synthesis and growth mechanism of ultra-long single crystal α-Si3N4 nanobelts with strong violet–blue luminescent properties. CrystEngComm, 2012, 14, 7301.	1.3	39
38	Luminescent properties of white-light-emitting phosphor LaMgAl11O19:Dy3+. Materials Letters, 2014, 125, 140-142.	1.3	38
39	Catalytic synthesis and growth mechanism of SiC@SiO2 nanowires and their photoluminescence properties. CrystEngComm, 2013, 15, 9032.	1.3	36
40	The luminescence properties of novel α-Mg ₂ Al ₄ Si ₅ O ₁₈ :Eu ²⁺ phosphor prepared in air. RSC Advances, 2014, 4, 18234-18239.	1.7	35
41	Tunable SrAl2Si2O8: Eu phosphor prepared in air via valence state-controlled means. Optical Materials, 2015, 42, 80-86.	1.7	35
42	Crystal structure and luminescence property of a novel single-phase white light emission phosphor KCaBi(PO4)2:Dy3+. Materials Research Bulletin, 2017, 86, 146-152.	2.7	35
43	Synthesis of \hat{l}^2 -Si3N4 powder from quartz via carbothermal reduction nitridation. Powder Technology, 2013, 235, 728-734.	2.1	34
44	Effect of LaPO4 content on the microstructure and machinability of Al2O3/LaPO4 composites. Materials Letters, 2002, 57, 822-827.	1.3	33
45	Novel carbon-incorporated porous ZnFe ₂ O ₄ nanospheres for enhanced photocatalytic hydrogen generation under visible light irradiation. RSC Advances, 2016, 6, 56069-56076.	1.7	33
46	Solid particle erosion-wear behavior of SiC–Si 3 N 4 composite ceramic at elevated temperature. Ceramics International, 2014, 40, 16201-16207.	2.3	32
47	Effect of different Bi/Ti molar ratios on visible-light photocatalytic activity of BiOI/TiO2 heterostructured nanofibers. Ceramics International, 2016, 42, 15780-15786.	2.3	32
48	Synthesis and photoluminescence properties of novel thermally robust Na3GdP2O8: Re3+ (Re = Sm, Dy) phosphors. Chemical Physics Letters, 2018, 710, 84-89.	1.2	32
49	Microstructure and mechanical properties of machinable Al2O3/LaPO4 composites by hot pressing. Ceramics International, 2003, 29, 83-89.	2.3	31
50	The effects of atmosphere and calcined temperature on photocatalytic activity of TiO2 nanofibers prepared by electrospinning. Nanoscale Research Letters, 2013, 8, 548.	3.1	31
51	Synthesis of Si3N4 powder with tunable $\hat{l}\pm/\hat{l}^2$ -Si3N4 content from waste silica fume using carbothermal reduction nitridation. Powder Technology, 2014, 252, 51-55.	2.1	31
52	Electrospun mullite fibers from the sol–gel precursor. Journal of Sol-Gel Science and Technology, 2015, 74, 208-219.	1.1	31
53	Fe(NO3)3-assisted large-scale synthesis of Si3N4 nanobelts from quartz and graphite by carbothermal reduction–nitridation and their photoluminescence properties. Scientific Reports, 2015, 5, 8998.	1.6	30
54	One-pot hydrothermal synthesis and high temperature thermal stability of CexZr1â^'xO2 nanocrystals. RSC Advances, 2013, 3, 19508.	1.7	29

#	Article	IF	CITATIONS
55	Solid particle erosion of alumina ceramics at elevated temperature. Materials Chemistry and Physics, 2013, 139, 765-769.	2.0	29
56	Study on the slag corrosion resistance of unfired Al2O3–SiC/β-Sialon/Ti(C, N)–C refractories. Ceramics International, 2014, 40, 1593-1598.	2.3	29
57	Synthesis and optical properties of Pr3+-doped LaMgAl11O19–A novel blue converting yellow phosphor for white light emitting diodes. Ceramics International, 2015, 41, 4238-4242.	2.3	29
58	Powder synthesis and properties of LiTaO3 ceramics. Advanced Powder Technology, 2014, 25, 933-936.	2.0	27
59	Energy transfer and thermal stability of Ce3+, Tb3+ co-doped Ca3Si2O4N2 phosphors for white light-emitting diodes. Chemical Physics Letters, 2017, 690, 31-37.	1.2	27
60	Energy transfer mechanism and color-tunable luminescence properties of Eu3+-doped BaMg2V2O8 vanadate phosphors. Chemical Physics Letters, 2016, 662, 86-90.	1.2	26
61	Synthesis of \hat{I}^2 -SiC nanowires via a facile CVD method and their photoluminescence properties. RSC Advances, 2016, 6, 24267-24272.	1.7	26
62	Controllable synthesis of Titania‧upported Bismuth Oxyiodide Heterostructured Nanofibers with Highly Exposed (1 1 0) Bismuth Oxyiodide Facets for Enhanced Photocatalytic Activity. ChemCatChem, 2016, 8, 3780-3789.	1.8	25
63	Luminescence properties and energy transfer behavior of colour-tunable white-emitting Sr ₄ Al ₁₄ O ₂₅ phosphors with co-doping of Eu ²⁺ , Eu ³⁺ and Mn ⁴⁺ . RSC Advances, 2017, 7, 52995-53001.	1.7	25
64	Synthesis and photoluminescence properties of novel BiBa2V3O11: A (A=Sm3+, Eu3+) phosphors. Optical Materials, 2015, 49, 266-270.	1.7	24
65	Crystal structure and luminescence properties of a singleâ€component whiteâ€lightâ€emitting phosphor <scp>Ca₈ZnLa(PO₄)₇</scp> Eu ²⁺ , <scp>Mn^{Journal of the American Ceramic Society, 2017, 100, 3050-3060.}</scp>	ı pı⊳2+ <td>p24/scp>.</td>	p 24 /scp>.
66	Effect of Al2O3 addition on properties of non-sintered SiCâ€"Si3N4 composite refractory materials. International Journal of Refractory Metals and Hard Materials, 2014, 46, 6-11.	1.7	23
67	Î ² -Sialon nanowires, nanobelts and hierarchical nanostructures: morphology control, growth mechanism and cathodoluminescence properties. Nanoscale, 2014, 6, 424-432.	2.8	23
68	Novel calcium hexaluminate/spinel-alumina composites with graded microstructures and mechanical properties. Scientific Reports, 2014, 4, 4333.	1.6	23
69	Preparation and growth mechanism of \hat{l}^2 -SiC nanowires by using a simplified thermal evaporation method. Journal of Crystal Growth, 2015, 419, 20-24.	0.7	23
70	A C ₃ N ₄ /Bi ₂ WO ₆ organic–inorganic hybrid photocatalyst with a high visible-light-driven photocatalytic activity. Journal of Materials Research, 2016, 31, 713-720.	1.2	23
71	Preparation and mechanical properties of Fe/Mo–Sialon ceramic composites. Scripta Materialia, 2009, 61, 632-635.	2.6	22
72	Synthesis and formation mechanism of twinned SiC nanowires made by a catalyst-free thermal chemical vapour deposition method. RSC Advances, 2014, 4, 18360-18364.	1.7	22

#	Article	IF	CITATIONS
73	Morphology controlling method for amorphous silica nanoparticles and jellyfish-like nanowires and their luminescence properties. Scientific Reports, 2016, 6, 22459.	1.6	21
74	Crystal structure tailoring and luminescence tuning of Sr1â^'Ba Al2Si2O8:Eu2+ phosphors for white-light-emitting diodes. Journal of Alloys and Compounds, 2019, 776, 554-559.	2.8	21
75	Improved low-temperature reducibility in ceria zirconiananoparticles by redox treatment. Journal of Materials Chemistry, 2012, 22, 1770-1773.	6.7	20
76	Novel, low-cost solid-liquid-solid process for the synthesis of \hat{l}_{\pm} -Si3N4 nanowires at lower temperatures and their luminescence properties. Scientific Reports, 2015, 5, 17250.	1.6	20
77	Preparation, crystal structure and up-conversion luminescence of Er ³⁺ , Yb ³⁺ co-doped Gd ₂ (WO ₄) ₃ . RSC Advances, 2015, 5, 73077-73082.	1.7	20
78	Preparation of Al ₂ O ₃ –SiC composite powder from kyanite tailings via carbothermal reduction process. Advances in Applied Ceramics, 2018, 117, 9-15.	0.6	20
79	Nd-Sialon Microcrystals with an Orthogonal Array. Crystal Growth and Design, 2010, 10, 2439-2442.	1.4	19
80	Preparation and Formation Mechanism of Elongated (<scp><scp>Ca</scp></scp> Ca Ca Cac/scp>	1.9	19
81	Structural and luminescence properties of red-emitting Cs _{1â^'x} MgPO ₄ :xEu ²⁺ phosphors for near-UV-pumped light emitting diodes. RSC Advances, 2015, 5, 9933-9938.	1.7	19
82	Discovery of novel solid solution Ca3Si3â^'x O3+x N4â^'2x : Eu2+ phosphors: structural evolution and photoluminescence tuning. Scientific Reports, 2017, 7, 18103.	1.6	19
83	Phase transformation of coal gangue by aluminothermic reduction nitridation: Influence of sintering temperature and aluminum content. Applied Clay Science, 2014, 101, 94-99.	2.6	18
84	Cyan-emitting LiBaBO3:Eu2+ phosphor: Crystal structure and luminescence property comparison with LiSrBO3:Eu2+. Chemical Physics Letters, 2015, 628, 21-24.	1.2	18
85	The Influence of Plateletâ€Like LaMgAl ₁₁ O ₁₉ on the Toughness of 3Âmol% Yttria Partially Stabilized Zirconia Ceramic. International Journal of Applied Ceramic Technology, 2015, 12, 176-183.	1.1	18
86	Phase behavior analysis of MgO–C refractory at high temperature: Influence of Si powder additives. Ceramics International, 2015, 41, 5186-5190.	2.3	18
87	Preparation and thermal properties of phase change materials based on paraffin with expanded graphite and carbon foams prepared from sucroses. RSC Advances, 2016, 6, 95085-95091.	1.7	18
88	Efficient Adsorption of the Cd(II) and As(V) Using Novel Adsorbent Ferrihydrite/Manganese Dioxide Composites. ACS Omega, 2019, 4, 18627-18636.	1.6	18
89	Direct Blow Spinning of Flexible and Transparent Ag Nanofiber Heater. Advanced Materials Technologies, 2019, 4, 1900045.	3.0	18
90	Synthesis and luminescence properties of nitrided lanthanum magnesium hexaluminate LaMgAl11O19 phosphors. Ceramics International, 2014, 40, 4535-4539.	2.3	17

#	Article	IF	Citations
91	A facile strategy for fabricating hierarchically mesoporous Co ₃ O ₄ urchins and bundles and their application in Li-ion batteries with high electrochemical performance. RSC Advances, 2015, 5, 24486-24493.	1.7	17
92	Photocatalytic Property of TiO2-Vermiculite Composite Nanofibers via Electrospinning. Nanoscale Research Letters, 2015, 10, 977.	3.1	17
93	Valent control and spectral tuning by cation site engineering strategy in Eu doped Sr1â^'Ba Al2Si2O8 phosphor. Journal of Alloys and Compounds, 2019, 806, 529-536.	2.8	17
94	Synthesis, structural, and luminescence properties of BiOCl:Dy3+ single-component white-light-emitting phosphor for n-UV w-LEDs. Chemical Physics Letters, 2019, 727, 72-77.	1.2	17
95	Synthesis of Al8B4C7 ceramic powder from Al/B4C/C mixtures. Powder Technology, 2012, 226, 269-273.	2.1	16
96	Ni(NO ₃) ₂ -Assisted Catalytic Synthesis and Photoluminescence Property of Ultralong Single Crystal Sialon Nanobelts. Crystal Growth and Design, 2013, 13, 10-14.	1.4	16
97	Effect of temperature on solid particle impact erosion wear mechanism of 5mol% Yttria Stabilized Zirconia ceramics. Ceramics International, 2015, 41, 6807-6811.	2.3	15
98	Fabrication and abrasive wear behavior of ZrO2-SiC-Al2O3 ceramic. Ceramics International, 2017, 43, 15060-15067.	2.3	15
99	Luminescence properties of emission tunable single-phased phosphor La 7 O 6 (BO 3)(PO 4) $2:$ Ce $3+$, Tb $3+$, Eu $3+$. Materials Research Bulletin, 2018, 97, 506-511.	2.7	15
100	Molten salt synthesis, growth mechanism, and photoluminescence of rod chlorapatite microcrystallites. CrystEngComm, 2019, 21, 1809-1817.	1.3	15
101	Microstructure characteristics of FeMo–Sialon ceramic composite. Materials Science & Discrete & Discrete Science & Discrete Science & Discrete & Discret	2.6	14
102	Controlled synthesis of porous FeCO3 microspheres and the conversion to \hat{l}_{\pm} -Fe2O3 with unconventional morphology. Ceramics International, 2014, 40, 11975-11983.	2.3	14
103	Infrared-to-visible up-conversion luminescence and energy transfer of RE 3+ /Yb 3+ (RE = Ho, Tm) co-doped SrIn 2 O 4. Infrared Physics and Technology, 2014, 67, 107-110.	1.3	14
104	Large scale synthesis of α-Si 3 N 4 nanowires through a kinetically favored chemical vapour deposition process. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 95, 132-138.	1.3	14
105	Growth mechanism and synchronous synthesis of 1D $\langle i \rangle \hat{l}^2 \langle i \rangle$ -sialon nanostructures and $\langle i \rangle \hat{l}^2 \langle i \rangle$ -sialon-Si $\langle sub \rangle 3 \langle sub \rangle N \langle sub \rangle 4 \langle sub \rangle$ composite powders by a process of reduction nitridation. Materials Research Express, 2019, 6, 065054.	0.8	14
106	Thermally Conductive and Shapeâ€Stabilized Polyethylene Glycol/Carbon Foam Phaseâ€Change Composites for Thermal Energy Storage. ChemistrySelect, 2020, 5, 3217-3224.	0.7	14
107	Preparation and Characterization of Flexible Smart Glycol/Polyvinylpyrrolidone/Nano-Al ₂ O ₃ Phase Change Fibers. Energy & Change Fibers. Energy & Change Fibers. Energy & Fuels, 2021, 35, 877-882.	2.5	14
108	Phase behavior of serpentine mineral by carbothermal reduction nitridation. Applied Clay Science, 2012, 57, 86-90.	2.6	13

#	Article	IF	CITATIONS
109	Influence of yttria addition on the phase transformations of zirconia from zircon ore by carbothermal reduction process. Solid State Sciences, 2012, 14, 730-734.	1.5	13
110	Synthesis of ZrN–Si3N4 composite powders from zircon and quartz by carbothermal reduction and nitridation. Powder Technology, 2013, 246, 677-681.	2.1	13
111	Preparation, microstructure, and compressive strength of carbon foams derived from sucrose and kaolinite. Journal of Materials Research, 2014, 29, 1018-1025.	1.2	13
112	Novel Synthesis Method and Characterization of Porous Calcium Hexaâ€Aluminate Ceramics. Journal of the American Ceramic Society, 2014, 97, 2702-2704.	1.9	13
113	Mechanical Properties and Solid Particle Erosion Behavior of LaMgAl ₁₁ O ₁₉ –Al ₂ O ₃ Ceramic at Room and Elevated Temperatures. Journal of the American Ceramic Society, 2016, 99, 2138-2146.	1.9	13
114	Preparation and mechanical properties of NiCr–Al2O3–ZrO2(8Y) ceramic composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 554, 1-5.	2.6	12
115	Microstructural and Mechanical Characterization of Pressureâ€Less Sintered <scp><scp>AlN</scp></scp> â€polytypoid Based Composites by Compositional Design. Journal of the American Ceramic Society, 2012, 95, 2044-2050.	1.9	12
116	Giant dielectric tunability properties of Sr and Sb coâ€doped La ₂ NiMnO ₆ ceramics induced by extrinsic contribution. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1207-1212.	0.8	12
117	Synthesis of Sialon-SiC Composites from Kyanite Tailings by Carbothermal Reduction Nitridation. Jom, 2015, 67, 1379-1384.	0.9	12
118	Direct-white-emitting phosphor SrAl ₂ O ₄ : Eu ^{2+/3+} with colour-tunable photoluminescence by variation of europium activator valence. Materials Research Express, 2018, 5, 096202.	0.8	12
119	In situ synthesis of adsorptive β-Bi ₂ O ₃ /BiOBr photocatalyst with enhanced degradation efficiency. Journal of Materials Research, 2019, 34, 3450-3461.	1.2	12
120	Graded machinable Si3N4/h-BN and Al2O3/LaPO4 ceramic composites. Materials & Design, 2002, 23, 565-570.	5.1	11
121	Y _{3â^'<i>x</i>} Er _{<i>x</i>} Al ₅ O ₁₂ Aluminate Ceramics: Preparation, Thermal Properties and Theoretical Model of Thermal Conductivity. Advanced Engineering Materials, 2012, 14, 170-177.	1.6	11
122	Synthesis and characterization of single-crystalline phase Li-α-Sialon. Ceramics International, 2012, 38, 3391-3395.	2.3	11
123	Synchronistic preparation of fibre-like SiC and cubic-ZrO2/SiC composite from zircon via carbothermal reduction process. Materials Research Bulletin, 2013, 48, 7-11.	2.7	11
124	Porous peony-like α-Fe ₂ O ₃ hierarchical micro/nanostructures: synthesis, characterization and its lithium storage properties. RSC Advances, 2014, 4, 41578-41583.	1.7	11
125	A facile fabrication method for ultrathin NiO/Ni nanosheets as a high-performance electrocatalyst for the oxygen evolution reaction. RSC Advances, 2017, 7, 18539-18544.	1.7	11
126	Color tunable Ba0.79Al10.9O17.14:xEu phosphor prepared in air via valence state control. Journal of Advanced Ceramics, 2017, 6, 81-89.	8.9	11

#	ARTICLE	IF	CITATIONS
127	Preparation and photoluminescence properties of red-emitting phosphor ZnAl ₂ O ₄ :Eu ³⁺ with an intense ⁵ D _O → ⁷ F ₂ transition. Materials Research Express, 2018, 5, 025501.	0.8	11
128	Preparation and performance of shape-stable phase change materials based on carbonized-abandoned orange peel and paraffin. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 289-298.	1.0	11
129	Crystal structure of NdSi6â^'zAl1+zOzN10â^'z($z = 0.4$) determined by single-crystal X-ray diffraction. Dalton Transactions, 2011, 40, 1261-1266.	1.6	10
130	Investigation on the Photoelectrocatalytic Activity of Well-Aligned TiO2Nanotube Arrays. International Journal of Photoenergy, 2012, 2012, 1-7.	1.4	10
131	Effect of final pyrolysis temperature on the mechanical and thermal properties of carbon foams reinforced by aluminosilicate. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 558, 446-450.	2.6	10
132	Fabrication and liquid–solid, two-phase erosion wear behaviour of β-Sialon ceramic from pyrophyllite by carbothermal reduction and nitridation. Ceramics International, 2014, 40, 10737-10741.	2.3	10
133	Preparation and blast furnace slag corrosion behavior of SiC–Sialon–ZrN free-fired refractories. Ceramics International, 2014, 40, 9763-9773.	2.3	10
134	Fabrication of Si ₃ N ₄ nanowire membranes: free standing disordered nanopapers and aligned nanowire assemblies. Materials Research Express, 2016, 3, 085020.	0.8	10
135	Multiple Energy Transfer in Luminescence-Tunable Single-Phased Phosphor NaGdTiO4: Tm3+, Dy3+, Sm3+. Nanomaterials, 2020, 10, 1249.	1.9	10
136	Improvement of luminescence performance of single-phase white-emitting Na3Gd(PO4)2:Dy3+ phosphor by co-doping with Eu3+. Polyhedron, 2022, 222, 115860.	1.0	10
137	Preparation of LiTaO3 nanoparticles by a sol–gel route. Journal of Sol-Gel Science and Technology, 2011, 58, 664-668.	1.1	9
138	Effect of Yâ€Î±â€Sialon Seeding and Holding Time on the Formation of Elongated (<scp><scp>Ca</scp>,<scp>,<scp>Dy</scp>,<scp>(ā€Ĵ±â€Sialon Crystals Prepared via Carbothermal Reduction and Nitridation. Journal of the American Ceramic Society, 2012, 95, 2777-2781.</scp></scp></scp>	1.9	9
139	Si3N4-SiCpComposites Reinforced byln SituCo-Catalyzed Generated Si3N4Nanofibers. Journal of Nanomaterials, 2014, 2014, 1-6.	1.5	9
140	A novel green phosphor LaMgAl11019:Ho3+ for near-UV/blue light-pumped white light-emitting diodes. Chemical Physics Letters, 2015, 618, 182-185.	1.2	9
141	Influence of cation substitution on the crystal structure and luminescent properties in apatite structural Ba4.97â°'Sr (PO4)3Cl:0.03Eu2+ phosphors. Chemical Physics Letters, 2016, 658, 248-253.	1.2	9
142	Growth, structure, and luminescence properties of novel silica nanowires and interconnected nanorings. Scientific Reports, 2017, 7, 10482.	1.6	9
143	Yellow Emission Obtained by Combination of Broadband Emission and Multi-Peak Emission in Garnet Structure Na2YMg2V3O12: Dy3+ Phosphor. Molecules, 2020, 25, 542.	1.7	9
144	Synthesis of ZrN–sialon composites from zircon and alumina by carbothermal reduction–nitridation. Materials Research Bulletin, 2012, 47, 3273-3276.	2.7	8

#	Article	IF	CITATIONS
145	A porous (La, Sm) co-doped Sialon-polytypoid ceramic with colour and structure differences in multilayers. CrystEngComm, 2013, 15, 8552.	1.3	8
146	Photoluminescence properties and application of yellow Ca 0.65 Si 10 Al 2 O 0.7 N 15.3 : \times Eu 2+ phosphors for white LEDs. Solid State Sciences, 2017, 64, 84-90.	1.5	8
147	Tunable photoluminescence of apatite phosphor Ca _{5.95â°'<i>x</i>} Sr _{<i>x</i>} La ₄ (SiO ₄) ₂ (PO <sul 102,="" 2019,="" 4226-4235.<="" american="" and="" application="" ceramic="" diodes.="" in="" its="" journal="" lightâ€emitting="" of="" society,="" td="" the=""><td>b>4</td><td>) {sub>4< s</td></sul>	b>4) {sub>4< s
148	In situ TEM observation of crack propagation in LiTaO3 particle toughened Al2O3 ceramics. Ceramics International, 2011, 37, 647-650.	2.3	7
149	Abrasive wear behavior of SiCp–Sialon composite refractories. Ceramics International, 2015, 41, 9146-9151.	2.3	7
150	Growth mechanism and PL properties of \hat{l}^2 -sialon nanobelts/nanowires synthesized by a process of aluminothermic reduction nitridation of zircon. CrystEngComm, 2015, 17, 1591-1596.	1.3	7
151	Synthesis and Luminescence Properties of a Novel Green-Yellow-Emitting Phosphor BiOCl:Pr3+ for Blue-Light-Based w-LEDs. Molecules, 2019, 24, 1296.	1.7	7
152	Nickel Quantum Dots Anchored in Biomassâ€Derived Nitrogenâ€Doped Carbon as Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Materials Interfaces, 2022, 9, .	1.9	7
153	Characterization of dielectric performance of tourmaline single crystals from Yunnan, China. CrystEngComm, 2012, 14, 7153.	1.3	6
154	Effects of Calcium Hexaluminate Addition on the Mechanical Properties of Zirconia-Toughened-Alumina. Key Engineering Materials, 0, 544, 286-290.	0.4	6
155	Preparation, Microstructure, and Mechanical Properties of Spinel-Corundum-Sialon Composite Materials from Waste Fly Ash and Aluminum Dross. Advances in Materials Science and Engineering, 2014, 2014, 1-10.	1.0	6
156	Effects of Atmospheric Powder on Dielectric, Piezoelectric, and Ferroelectric Properties of NaSr ₂ Nb ₅ O ₁₅ Ceramics. International Journal of Applied Ceramic Technology, 2015, 12, E134.	1.1	6
157	High-Temperature Transformation of Asbestos Tailings by Carbothermal Reduction. Clays and Clay Minerals, 2013, 61, 75-82.	0.6	5
158	Fe–Sialon–Ti(C,N) composites from carbothermal reduction–nitridation of low-priced minerals and their application in taphole clay refractories. Ceramics International, 2014, 40, 9709-9714.	2.3	5
159	Dependence of crystal structure on mechanical and thermophysical properties of magnetoplumbiteâ€type LnMgAl ₁₁ O ₁₉ ceramics with substitution of Ln ³⁺ lons. International Journal of Applied Ceramic Technology, 2019, 16, 1596-1605.	1.1	5
160	An Efficient Environmentally Friendly Composite Material Based on Carbonized Biological Cellulose/Paraffin: Thermal and Sustainable Properties Analysis. ChemistrySelect, 2020, 5, 12051-12056.	0.7	5
161	Characterization of domain configurations in LiTaO3/Al2O3 ceramic composites. Materials Chemistry and Physics, 2011, 125, 143-147.	2.0	4
162	The effects of SiC _p addition on the <i>>z</i> -value and mechanical properties of β-Sialon–SiC _p refractories. Journal of the Ceramic Society of Japan, 2012, 120, 387-392.	0.5	4

#	Article	IF	Citations
163	Microstructure and electrical resistivity of carbon/carbon composites prepared by thermal gradient chemical vapor infiltration. Journal of Reinforced Plastics and Composites, 2012, 31, 837-844.	1.6	4
164	Novel method of ordering silver nanowires for synthesizing flexible films and their conductivity. Materials Research Express, 2016, 3, 115022.	0.8	4
165	Novel humic acid-based carbon materials: adsorption thermodynamics and kinetics for cadmium(II) ions. Colloid and Polymer Science, 2018, 296, 537-546.	1.0	4
166	Preparation of carbon-coated Fe3O4 porous particles and their adsorption properties of iron (III) ion. Water Science and Technology: Water Supply, 2018, 18, 306-317.	1.0	4
167	Preparation of High-Quality Porous Calcium Hexa-Aluminate Ceramics using Salt as Both Reaction Medium and Pore-Former. InterCeram: International Ceramic Review, 2018, 67, 50-57.	0.2	4
168	Assembly of $\hat{l}^2 \hat{a} \in SiC$ Nanowires film and humidity sensing performance. International Journal of Applied Ceramic Technology, 2019, 16, 1193-1199.	1.1	4
169	Synthesis of TiN-Si3N4 composites from rutile and quartz by carbothermal reduction nitridation. Science of Sintering, 2012, 44, 57-64.	0.5	4
170	Effect of silicon addition on mechanical properties of mullite-SiC composite refractories. Journal of the Ceramic Society of Japan, 2012, 120, 574-578.	0.5	3
171	Preparation and Luminescence Property of LaMgAl ₁₁ O ₁₉ . Key Engineering Materials, 2012, 519, 224-227.	0.4	3
172	Preparation, characterisation, and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. Journal of Electroceramics, 2014, 32, 255-259.	0.8	3
173	Synthesis, structure analysis and magnetic properties of Ca2TiMnO6 oxides. Ceramics International, 2015, 41, 14184-14189.	2.3	3
174	Fabrication of morphology-controlled MgO nanowhiskers and "nanocrosses―by magnesiothermic synthesis in vapor phase at 550 °C. RSC Advances, 2015, 5, 62747-62751.	1.7	3
175	Uranium Extraction: Significantly Enhanced Uranium Extraction from Seawater with Mass Produced Fully Amidoximated Nanofiber Adsorbent (Adv. Energy Mater. 33/2018). Advanced Energy Materials, 2018, 8, 1870143.	10.2	3
176	Effects of Ta Ion Doping on Structure and Electrochemical Performances of Li ₃ V ₂ (PO ₄) ₃ /C Cathode Materials. Key Engineering Materials, 2012, 519, 137-141.	0.4	2
177	Transmission electron microscopy study on crack propagation characteristics of pressureless sintered 15R-Î ² -U Sialon-polytypoid composite. Ceramics International, 2014, 40, 1045-1049.	2.3	2
178	Study of erosion wear behavior of MgO stabilized ZrO ₂ ceramics due to solid particles impact at elevated temperature. Journal of the Ceramic Society of Japan, 2015, 123, 933-936.	0.5	2
179	Influence of LaMgAl $<$ sub $>11sub>0<sub>19sub>0n Solid Particle Impact Erosion Wear Behavior of 3<scp>YSZ</scp> Ceramic at Elevated Temperatures. International Journal of Applied Ceramic Technology, 2015, 12, 805-810.$	1.1	2
180	Carbothermal/aluminothermic reduction nitridation synthesis of ZrNâ€"SiAlON refractory composites from zircon and bauxite: a comparative study of the reduction effect of reducers. Advances in Applied Ceramics, 2017, 116, 151-157.	0.6	2

#	Article	IF	CITATIONS
181	Processing and electrochemical properties of CNT reinforced carbon nanofibers prepared by pressurized gyration. Journal of Materials Research, 2018, 33, 4251-4260.	1.2	2
182	Facile synthesis of αâ€Si ₃ N ₄ nanoneedles and their photoluminescence properties. International Journal of Applied Ceramic Technology, 2019, 16, 2373-2379.	1.1	2
183	Effect of Silicon Addition on High-Temperature Solid Particle Erosion-Wear Behaviour of Mullite-SiC Composite Refractories Prepared by Nitriding Reactive. Advances in Materials Science and Engineering, 2014, 2014, 1-8.	1.0	1
184	Investigation on lanthanide-dependent z value of JEM-phase Sialon. RSC Advances, 2014, 4, 6556.	1.7	1
185	2D Metals: 2D Metals by Repeated Size Reduction (Adv. Mater. 37/2016). Advanced Materials, 2016, 28, 8169-8169.	11.1	1
186	Preparation of Si3N4 Form Diatomite via a Carbothermal Reduction-Nitridation Process. Jom, 2016, 68, 1456-1464.	0.9	1
187	"114â€â€Type Nitrides LnAl(Si _{4â°'<i>x</i>} Al _{<i>x</i>})N ₇ O _{<i^î< i=""></i^î<>} vith Unusual [AlN ₆] Octahedral Coordination. Angewandte Chemie - International Edition, 2017, 56, 3886-3891.	7.2	1
188	Study on Multi-Doped Ceria-Based Solid Electrolytes. Key Engineering Materials, 2012, 519, 28-31.	0.4	0
189	Effect of LiTaO3grain sizes on microstructure and properties of Al2O3. RSC Advances, 2014, 4, 2826-2829.	1.7	0
190	"114â€â€Type Nitrides LnAl(Si _{4â°′<i>x</i>} Al _{<i>x</i>})N ₇ O _{<i>δ</i>} with Unusual [AlN ₆] Octahedral Coordination. Angewandte Chemie, 2017, 129, 3944-3949.	1.6	0
191	Hierarchical fibrous honeycomb ceramics with high load capability and low lightâ€off temperature for the nextâ€generation auto emissions standards. Chemistry - A European Journal, 2022, , .	1.7	0
192	Effects of Preparation and Activation Manner on Surface Area of Hierarchical Porous Carbons Derived from Nut (Euryale ferox) Shell. ChemistrySelect, 2022, 7, .	0.7	0