
Wei Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9405838/publications.pdf Version: 2024-02-01

Μει Υλη

#	Article	IF	CITATIONS
1	Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature, 2022, 603, 616-623.	13.7	147
2	Nanoscale Controlled Oxidation of Liquid Metals for Stretchable Electronics and Photonics. Advanced Functional Materials, 2021, 31, 2006711.	7.8	14
3	Digital electronics in fibres enable fabric-based machine-learning inference. Nature Communications, 2021, 12, 3317.	5.8	81
4	Second harmonic generation in glass-based metasurfaces using tailored surface lattice resonances. Nanophotonics, 2021, 10, 3465-3475.	2.9	8
5	Recent Progress and Perspectives of Thermally Drawn Multimaterial Fiber Electronics. Advanced Materials, 2020, 32, e1904911.	11.1	143
6	Thermally drawn advanced functional fibers: New frontier of flexible electronics. Materials Today, 2020, 35, 168-194.	8.3	153
7	High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nature Communications, 2020, 11, 3537.	5.8	175
8	Structured nanoscale metallic glass fibres with extreme aspect ratios. Nature Nanotechnology, 2020, 15, 875-882.	15.6	59
9	Flexible Fiber Probe for Efficient Neural Stimulation and Detection. Advanced Science, 2020, 7, 2001410.	5.6	19
10	Computing Fabrics. Matter, 2020, 2, 786-788.	5.0	29
11	Microstructured Multimaterial Fibers for Microfluidic Sensing. Advanced Materials Technologies, 2019, 4, 1900417.	3.0	25
12	Self-assembly of nanostructured glass metasurfaces via templated fluid instabilities. Nature Nanotechnology, 2019, 14, 320-327.	15.6	80
13	Advanced Multimaterial Electronic and Optoelectronic Fibers and Textiles. Advanced Materials, 2019, 31, e1802348.	11.1	200
14	Super-elastic multi-material optical fibers for healthcare applications. , 2019, , .		1
15	Direct Synthesis of Selenium Nanowire Mesh on a Solid Substrate and Insights into Ultrafast Photocarrier Dynamics. Journal of Physical Chemistry C, 2018, 122, 25134-25141.	1.5	32
16	Superelastic Multimaterial Electronic and Photonic Fibers and Devices via Thermal Drawing. Advanced Materials, 2018, 30, e1707251.	11.1	135
17	Nano-structured optical metasurfaces and multi-material fibers for IR applications. , 2018, , .		1
18	Integration of High-performance Optoelectronic Nanowire-based Devices at Optical Fiber Tips. , 2018, , .		1

Integration of High-performance Optoelectronic Nanowire-based Devices at Optical Fiber Tips. , 2018, , . 18

Wei Yan

#	Article	IF	CITATIONS
19	Template assisted dewetting of optical glasses for large area, flexible and stretchable all dielectric metasurfaces. , 2018, , .		1
20	Super Elastic Optical Fibers Sensors. , 2018, , .		3
21	Stretchable Optical Fibers via Thermal Drawing. , 2018, , .		2
22	Multi-material and Multi-functional Optical Fibers. , 2018, , .		1
23	Controlled Subâ€Micrometer Hierarchical Textures Engineered in Polymeric Fibers and Microchannels via Thermal Drawing. Advanced Functional Materials, 2017, 27, 1605935.	7.8	47
24	Semiconducting Nanowireâ€Based Optoelectronic Fibers. Advanced Materials, 2017, 29, 1700681.	11.1	116
25	Multi-material optoelectronic fiber devices. Proceedings of SPIE, 2017, , .	0.8	2
26	Multi-material micro-electromechanical fibers with bendable functional domains. Journal Physics D: Applied Physics, 2017, 50, 144001.	1.3	32
27	Hexagonal mesoporous silica islands to enhance photovoltaic performance of planar junction perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 1415-1420.	5.2	17
28	Microstructure tailoring of selenium-core multimaterial optoelectronic fibers. Optical Materials Express, 2017, 7, 1388.	1.6	27
29	Class-forming ability and thermal stability of gas-atomized Zr ₅₀ Cu ₄₀ Al ₁₀ metallic glass powders. International Journal of Materials Research, 2011, 102, 435-440.	0.1	5
30	Processing Porous Bulk Metallic Glass Using Prealloyed Powders. Advanced Engineering Materials, 2010, 12, 1131-1136.	1.6	8