Tomasz Siudyga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9405824/publications.pdf

Version: 2024-02-01

		1163117	1058476
15	200	8	14
papers	citations	h-index	g-index
15	15	15	297
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Catalytic Removal of NOx on Ceramic Foam-Supported ZnO and TiO2 Nanorods Ornamented with W and V Oxides. Energies, 2022, 15, 1798.	3.1	4
2	Kinetic compensation effect of isoconversional methods. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132, 37-58.	1.7	16
3	Ultra-low temperature carbon (di)oxide hydrogenation catalyzed by hybrid ruthenium–nickel nanocatalysts: towards sustainable methane production. Green Chemistry, 2020, 22, 5143-5150.	9.0	19
4	A Study of Heat Exchange Processes within the Channels of Disk Pulse Devices. Energies, 2020, 13, 3492.	3.1	5
5	Ru and Ni—Privileged Metal Combination for Environmental Nanocatalysis. Catalysts, 2020, 10, 992.	3. 5	10
6	Nano-Ru Supported on Ni Nanowires for Low-Temperature Carbon Dioxide Methanation. Catalysts, 2020, 10, 513.	3.5	17
7	Szarawara–Kozik's temperature criterion in the context of three-parameter equation for modeling ammonia or methanol decomposition during heterogenous catalysis. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125, 493-504.	1.7	3
8	Mono- and bimetallic nano-Re systems doped Os, Mo, Ru, Ir as nanocatalytic platforms for the acetalization of polyalcohols into cyclic acetals and their applications as fuel additives. Applied Catalysis B: Environmental, 2018, 239, 154-167.	20.2	12
9	Oxide passivated Ni-supported Ru nanoparticles in silica: A new catalyst for low-temperature carbon dioxide methanation. Applied Catalysis B: Environmental, 2017, 206, 16-23.	20.2	49
10	Nano silica and molybdenum supported Re, Rh, Ru or Ir nanoparticles for selective solvent-free glycerol conversion to cyclic acetals with propanone and butanone under mild conditions. Applied Catalysis B: Environmental, 2017, 202, 335-345.	20.2	24
11	Influence of initial assumptions on the kinetic models of CO2 gasification of chars and cokes in solid phase. Journal of Thermal Analysis and Calorimetry, 2016, 126, 1911-1923.	3.6	2
12	The reactivity of cokes in Boudouard–Bell reactions in the context of an Ergun model. Journal of Thermal Analysis and Calorimetry, 2015, 122, 1013-1021.	3.6	7
13	Catalytic Gas-Phase Glycerol Processing over SiO2-, Cu-, Ni- and Fe- Supported Au Nanoparticles. PLoS ONE, 2015, 10, e0142668.	2.5	4
14	Ni-Supported Pd Nanoparticles with Ca Promoter: A New Catalyst for Low-Temperature Ammonia Cracking. PLoS ONE, 2015, 10, e0136805.	2.5	20
15	Analysis of relative rate of reaction/process. Journal of Thermal Analysis and Calorimetry, 2012, 109, 751-762.	3.6	8