Hannes C Schniepp

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9405488/hannes-c-schniepp-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

49	14,034	22	52
papers	citations	h-index	g-index
52	14,907	7.4 avg, IF	5.94
ext. papers	ext. citations		L-index

#	Paper	IF	Citations
49	Silk Protein Paper with In Situ Synthesized Silver Nanoparticles. <i>Macromolecular Bioscience</i> , 2021 , 21, e2000357	5.5	2
48	Protein Paper from Exfoliated Eri Silk Nanofibers. <i>Biomacromolecules</i> , 2020 , 21, 1303-1314	6.9	7
47	Advanced Manufacturing for Biomaterials and Biological Materials, Part II. <i>Jom</i> , 2020 , 72, 1432-1434	2.1	
46	Peeling in Biological and Bioinspired Adhesive Systems. <i>Jom</i> , 2020 , 72, 1509-1522	2.1	2
45	Advanced Manufacturing for Biomaterials and Biological Materials, Part I. <i>Jom</i> , 2020 , 72, 1151-1153	2.1	2
44	Surface-Initiated Passing-through Zwitterionic Polymer Brushes for Salt-Selective and Antifouling Materials. <i>Macromolecules</i> , 2020 , 53, 10278-10288	5.5	3
43	Boron Nitride Nanotube Impurity Detection and Purity Verification. <i>Chemistry of Materials</i> , 2020 , 32, 9090-9097	9.6	5
42	Using atomic force spectroscopy to study oil/mineral interactions at reservoir temperatures and pressures. <i>Fuel</i> , 2020 , 259, 116194	7.1	7
41	Nanofibrils as Building Blocks of Silk Fibers: Critical Review of the Experimental Evidence. <i>Jom</i> , 2019 , 71, 1248-1263	2.1	9
40	Protein-Based Structural Materials. <i>Jom</i> , 2019 , 71, 1245-1247	2.1	O
39	Characterization of graphene oxide: Variations in reported approaches. <i>Carbon</i> , 2019 , 154, 510-521	10.4	32
38	High-Purity Boron Nitride Nanotubes via High-Yield Hydrocarbon Solvent Processing. <i>Chemistry of Materials</i> , 2019 , 31, 8351-8357	9.6	10
37	High-throughput optical thickness and size characterization of 2D materials. <i>Nanoscale</i> , 2018 , 10, 1444	1- 7 1. 4 44	713
36	Polymer crystallinity and the ductile to brittle transition. <i>Polymer</i> , 2018 , 158, 72-76	3.9	18
35	Strength of Recluse Spiderā Silk Originates from Nanofibrils. ACS Macro Letters, 2018 , 7, 1364-1370	6.6	27
34	Toughness-enhancing metastructure in the recluse spider's looped ribbon silk. <i>Materials Horizons</i> , 2017 , 4, 377-382	14.4	17
33	Graphene Oxide's Reduction of Hydrolytic Degradation in Polyamide-11. <i>Polymer</i> , 2017 , 126, 248-258	3.9	15

(2010-2016)

32	Atomic Force Spectroscopy Using Colloidal Tips Functionalized with Dried Crude Oil: A Versatile Tool to Investigate Oil Mineral Interactions. <i>Energy & Energy & Ener</i>	4.1	16
31	AFM-based mechanical characterization of single nanofibres. <i>Nanoscale</i> , 2016 , 8, 8414-26	7.7	42
30	Enhancing polyimide's water barrier properties through addition of functionalized graphene oxide. <i>Polymer</i> , 2016 , 93, 23-29	3.9	26
29	Assessing graphene oxide/polymer interfacial interactions by way of peeling test. <i>Surface Innovations</i> , 2016 , 4, 158-166	1.9	5
28	Silk Reconstitution Disrupts Fibroin Self-Assembly. <i>Biomacromolecules</i> , 2015 , 16, 2796-804	6.9	30
27	Large scale thermal exfoliation and functionalization of boron nitride. Small, 2014, 10, 2352-5	11	148
26	Brown recluse spider's nanometer scale ribbons of stiff extensible silk. <i>Advanced Materials</i> , 2013 , 25, 7028-32	24	16
25	Spider Silk: Brown Recluse Spider's Nanometer Scale Ribbons of Stiff Extensible Silk (Adv. Mater. 48/2013). <i>Advanced Materials</i> , 2013 , 25, 7027-7027	24	
24	Methods of graphite exfoliation. Journal of Materials Chemistry, 2012, 22, 24992		389
23	Charge-Driven Selective Adsorption of Sodium Dodecyl Sulfate on Graphene Oxide Visualized by Atomic Force Microscopy. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 20080-20085	3.8	21
22	Stabilization of graphene sheets by a structured benzene/hexafluorobenzene mixed solvent. <i>Journal of the American Chemical Society</i> , 2012 , 134, 5018-21	16.4	67
21	Shear-induced self-assembly of native silk proteins into fibrils studied by atomic force microscopy. <i>Biomacromolecules</i> , 2012 , 13, 676-82	6.9	105
20	PHONON-INDUCED ANISOTROPIC DISPERSION FORCES ON A METALLIC SUBSTRATE. <i>Nano LIFE</i> , 2012 , 02, 1240001	0.9	2
19	Effects of coating a titanium alloy with fibronectin on the expression of osteoblast gene markers in the MC3T3 osteoprogenitor cell line. <i>International Journal of Oral and Maxillofacial Implants</i> , 2012 , 27, 1081-90	2.8	14
18	Measurement of the interfacial attraction between graphene oxide sheets and the polymer in a nanocomposite. <i>Journal of Applied Polymer Science</i> , 2011 , 122, 3739-3743	2.9	18
17	In Situ Reduction of Graphene Oxide in Polymers. <i>Macromolecules</i> , 2011 , 44, 9821-9829	5.5	87
16	Surface oxide net charge of a titanium alloy: comparison between effects of treatment with heat or radiofrequency plasma glow discharge. <i>Colloids and Surfaces B: Biointerfaces</i> , 2011 , 82, 173-81	6	21
15	Direct Measurement of the Interfacial Attractions between Functionalized Graphene and Polymers in Nanocomposites 2010 ,		5

14	Tuning of structural color using a dielectric actuator and multifunctional compliant electrodes. <i>Applied Optics</i> , 2010 , 49, 6689-96	0.2	35
13	Functionalized graphene sheets for polymer nanocomposites. <i>Nature Nanotechnology</i> , 2008 , 3, 327-31	28.7	2899
12	Inhibition and promotion of copper corrosion by CTAB in a microreactor system. <i>Langmuir</i> , 2008 , 24, 14269-75	4	31
11	Bending properties of single functionalized graphene sheets probed by atomic force microscopy. <i>ACS Nano</i> , 2008 , 2, 2577-84	16.7	167
10	Tip-induced orientational order of surfactant micelles on gold. <i>Langmuir</i> , 2008 , 24, 626-31	4	11
9	Orientational Order of Molecular Assemblies on Rough Surfaces. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 14902-14906	3.8	21
8	Raman spectra of graphite oxide and functionalized graphene sheets. <i>Nano Letters</i> , 2008 , 8, 36-41	11.5	3540
7	Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. <i>Chemistry of Materials</i> , 2007 , 19, 4396-4404	9.6	2986
6	Surfactant aggregates at rough solid-liquid interfaces. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 8708-	·1 3 .4	34
5	Orientational order of molecular assemblies on inorganic crystals. <i>Physical Review Letters</i> , 2006 , 96, 018	839041	27
4	Self-healing of surfactant surface micelles on millisecond time scales. <i>Journal of the American Chemical Society</i> , 2006 , 128, 12378-9	16.4	36
3	Functionalized single graphene sheets derived from splitting graphite oxide. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 8535-9	3.4	2925
2	Spontaneous emission in nanoscopic dielectric particles. <i>Optics Letters</i> , 2003 , 28, 1736-8	3	27
1	Spontaneous emission of europium ions embedded in dielectric nanospheres. <i>Physical Review Letters</i> . 2002 . 89, 257403	7.4	114