Frank A Dinenno

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9404708/frank-a-dinenno-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

90 5,512 39 74 g-index

92 5,882 4.8 5.49 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
90	Comprehensive assessment of cardiovascular structure and function and disease risk in middle-aged ultra-endurance athletes. <i>Atherosclerosis</i> , 2021 , 320, 105-111	3.1	1
89	ATP and acetylcholine interact to modulate vascular tone and Endrenergic vasoconstriction in humans. <i>Journal of Applied Physiology</i> , 2021 , 131, 566-574	3.7	1
88	Carbohydrate ingestion attenuates cognitive dysfunction following long-duration exercise in the heat in humans. <i>Journal of Thermal Biology</i> , 2021 , 100, 103026	2.9	O
87	K channel activation links local vasodilatation with muscle fibre recruitment during exercise in humans. <i>Journal of Physiology</i> , 2020 , 598, 2621-2636	3.9	3
86	Rapid-onset vasodilator responses to exercise in humans: Effect of increased baseline blood flow. <i>Experimental Physiology</i> , 2020 , 105, 88-95	2.4	
85	Acute differences in pulse wave velocity, augmentation index, and central pulse pressure following controlled exposures to cookstove air pollution in the Subclinical Tests of Volunteers Exposed to Smoke (SToVES) study. <i>Environmental Research</i> , 2020 , 180, 108831	7.9	8
84	Self-selected fluid volume and flavor strength does not alter fluid intake, body mass loss, or physiological strain during moderate-intensity exercise in the heat. <i>Journal of Thermal Biology</i> , 2020 , 89, 102575	2.9	1
83	Augmentation of endothelium-dependent vasodilatory signalling improves functional sympatholysis in contracting muscle of older adults. <i>Journal of Physiology</i> , 2020 , 598, 2323-2336	3.9	6
82	Escape, lysis, and feedback: endothelial modulation of sympathetic vasoconstriction. <i>Current Opinion in Pharmacology</i> , 2019 , 45, 81-86	5.1	5
81	Sustained exercise hyperemia during prolonged adenosine infusion in humans. <i>Physiological Reports</i> , 2019 , 7, e14009	2.6	1
80	Reduced deformability contributes to impaired deoxygenation-induced ATP release from red blood cells of older adult humans. <i>Journal of Physiology</i> , 2019 , 597, 4503-4519	3.9	15
79	Amplification of endothelium-dependent vasodilatation in contracting human skeletal muscle: role of K channels. <i>Journal of Physiology</i> , 2019 , 597, 1321-1335	3.9	16
78	Inhibition of Na /K -ATPase and K channels abolishes hypoxic hyperaemia in resting but not contracting skeletal muscle of humans. <i>Journal of Physiology</i> , 2018 , 596, 3371-3389	3.9	7
77	Acute ingestion of dietary nitrate increases muscle blood flow via local vasodilation during handgrip exercise in young adults. <i>Physiological Reports</i> , 2018 , 6, e13572	2.6	28
76	Elevated extracellular potassium prior to muscle contraction reduces onset and steady-state exercise hyperemia in humans. <i>Journal of Applied Physiology</i> , 2018 , 125, 615-623	3.7	6
75	Reductions in central arterial compliance with age are related to sympathetic vasoconstrictor nerve activity in healthy men. <i>Hypertension Research</i> , 2017 , 40, 493-495	4.7	18
74	Impaired peripheral vasodilation during graded systemic hypoxia in healthy older adults: role of the sympathoadrenal system. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2017 , 312, H832-H841	5.2	14

(2013-2017)

73	Sympatholytic effect of intravascular ATP is independent of nitric oxide, prostaglandins, Na /K -ATPase and K channels in humans. <i>Journal of Physiology</i> , 2017 , 595, 5175-5190	3.9	25
72	K channels mediate vasodilation but not sympatholysis. <i>Channels</i> , 2017 , 11, 495-496	3	2
71	Endothelium-dependent vasodilatory signalling modulates Badrenergic vasoconstriction in contracting skeletal muscle of humans. <i>Journal of Physiology</i> , 2016 , 594, 7435-7453	3.9	34
70	Prolonged adenosine triphosphate infusion and exercise hyperemia in humans. <i>Journal of Applied Physiology</i> , 2016 , 121, 629-35	3.7	8
69	Skeletal muscle vasodilation during systemic hypoxia in humans. <i>Journal of Applied Physiology</i> , 2016 , 120, 216-25	3.7	35
68	Regulation of skeletal muscle blood flow during exercise in ageing humans. <i>Journal of Physiology</i> , 2016 , 594, 2261-73	3.9	51
67	Contracting human skeletal muscle maintains the ability to blunt $1 - 1$ -adrenergic vasoconstriction during KIR channel and Na(+) /K(+) -ATPase inhibition. <i>Journal of Physiology</i> , 2015 , 593, 2735-51	3.9	18
66	Intravascular ATP and the regulation of blood flow and oxygen delivery in humans. <i>Exercise and Sport Sciences Reviews</i> , 2015 , 43, 5-13	6.7	20
65	Vascular regulation via KIR channels and Na(+)/K(+)-ATPase. <i>Channels</i> , 2015 , 9, 171-2	3	1
64	Liberation of ATP secondary to hemolysis is not mutually exclusive of regulated export. <i>Blood</i> , 2015 , 125, 1844-5	2.2	14
63	Acute ascorbic acid ingestion increases skeletal muscle blood flow and oxygen consumption via local vasodilation during graded handgrip exercise in older adults. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2015 , 309, H360-8	5.2	21
62	KIR channel activation contributes to onset and steady-state exercise hyperemia in humans. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2014 , 307, H782-91	5.2	37
61	Role of Endrenergic vasoconstriction in regulating skeletal muscle blood flow and vascular conductance during forearm exercise in ageing humans. <i>Journal of Physiology</i> , 2014 , 592, 4775-88	3.9	20
60	Mechanisms of rapid vasodilation after a brief contraction in human skeletal muscle. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2013 , 305, H29-40	5.2	61
59	Reactive hyperemia occurs via activation of inwardly rectifying potassium channels and Na+/K+-ATPase in humans. <i>Circulation Research</i> , 2013 , 113, 1023-32	15.7	62
58	Sources of intravascular ATP during exercise in humans: critical role for skeletal muscle perfusion. <i>Experimental Physiology</i> , 2013 , 98, 988-98	2.4	26
57	Mechanical effects of muscle contraction increase intravascular ATP draining quiescent and active skeletal muscle in humans. <i>Journal of Applied Physiology</i> , 2013 , 114, 1085-93	3.7	20
56	Robust internal elastic lamina fenestration in skeletal muscle arteries. <i>PLoS ONE</i> , 2013 , 8, e54849	3.7	24

55	Impaired hypoxic vasodilation in healthy older adults: role for altered sympatho-adrenal control of vascular tone. <i>FASEB Journal</i> , 2013 , 27, 1119.1	0.9	2
54	Sources of Intravascular ATP during Exercise in Man: Critical Role for Skeletal Muscle Perfusion. <i>FASEB Journal</i> , 2013 , 27, 710.6	0.9	
53	Augmentation of Endothelium-dependent Vasodilation during Mild Exercise Blunts Postjunctional Endrenergic Vasoconstriction. <i>FASEB Journal</i> , 2013 , 27, 924.9	0.9	1
52	Muscle contraction duration and fibre recruitment influence blood flow and oxygen consumption independent of contractile work during steady-state exercise in humans. <i>Experimental Physiology</i> , 2012 , 97, 750-61	2.4	15
51	ATP-mediated vasodilatation occurs via activation of inwardly rectifying potassium channels in humans. <i>Journal of Physiology</i> , 2012 , 590, 5349-59	3.9	50
50	Impaired skeletal muscle blood flow control with advancing age in humans: attenuated ATP release and local vasodilation during erythrocyte deoxygenation. <i>Circulation Research</i> , 2012 , 111, 220-30	15.7	79
49	The age-old tale of skeletal muscle vasodilation: new ideas regarding erythrocyte dysfunction and intravascular ATP in human physiology. <i>Circulation Research</i> , 2012 , 111, e203-4	15.7	1
48	Modulation of postjunctional Endrenergic vasoconstriction during exercise and exogenous ATP infusions in ageing humans. <i>Journal of Physiology</i> , 2011 , 589, 2641-53	3.9	36
47	Combined inhibition of nitric oxide and vasodilating prostaglandins abolishes forearm vasodilatation to systemic hypoxia in healthy humans. <i>Journal of Physiology</i> , 2011 , 589, 1979-90	3.9	43
46	Augmented skeletal muscle hyperaemia during hypoxic exercise in humans is blunted by combined inhibition of nitric oxide and vasodilating prostaglandins. <i>Journal of Physiology</i> , 2011 , 589, 3671-83	3.9	42
45	Mechanisms of ATP-mediated vasodilation in humans: modest role for nitric oxide and vasodilating prostaglandins. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2011 , 301, H1302-10	5.2	50
44	Vasodilatory responsiveness to adenosine triphosphate in ageing humans. <i>Journal of Physiology</i> , 2010 , 588, 4017-27	3.9	37
43	Nitric oxide, but not vasodilating prostaglandins, contributes to the improvement of exercise hyperemia via ascorbic acid in healthy older adults. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2010 , 299, H1633-41	5.2	75
42	Influence of contractile work and muscle fiber recruitment on skeletal muscle blood flow in humans. <i>FASEB Journal</i> , 2010 , 24, lb645	0.9	1
41	Endothelium-dependent vasodilatation and exercise hyperaemia in ageing humans: impact of acute ascorbic acid administration. <i>Journal of Physiology</i> , 2009 , 587, 1989-2003	3.9	98
40	Graded sympatholytic effect of exogenous ATP on postjunctional alpha-adrenergic vasoconstriction in the human forearm: implications for vascular control in contracting muscle. <i>Journal of Physiology</i> , 2008 , 586, 4305-16	3.9	80
39	Evidence for impaired skeletal muscle contraction-induced rapid vasodilation in aging humans. American Journal of Physiology - Heart and Circulatory Physiology, 2008 , 294, H1963-70	5.2	47
38	Ageing and leg postjunctional alpha-adrenergic vasoconstrictor responsiveness in healthy men. Journal of Physiology, 2007 , 582, 63-71	3.9	64

(2003-2007)

37	Mechanical influences on skeletal muscle vascular tone in humans: insight into contraction-induced rapid vasodilatation. <i>Journal of Physiology</i> , 2007 , 583, 861-74	3.9	87
36	Effects of Aging on Whole-Leg EAdrenergic Vasoconstrictor Responsiveness in Healthy Men. <i>FASEB Journal</i> , 2007 , 21, A565	0.9	
35	Reduced forearm alpha1-adrenergic vasoconstriction is associated with enhanced heart rate fluctuations in humans. <i>Journal of Applied Physiology</i> , 2006 , 100, 792-9	3.7	8
34	Alpha-adrenergic control of skeletal muscle circulation at rest and during exercise in aging humans. <i>Microcirculation</i> , 2006 , 13, 329-41	2.9	58
33	Impaired modulation of sympathetic alpha-adrenergic vasoconstriction in contracting forearm muscle of ageing men. <i>Journal of Physiology</i> , 2005 , 567, 311-21	3.9	94
32	Impact of combined NO and PG blockade on rapid vasodilation in a forearm mild-to-moderate exercise transition in humans. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2005 , 288, H214-20	5.2	33
31	Mechanical effects of muscle contraction do not blunt sympathetic vasoconstriction in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2005 , 289, H1610-7	5.2	15
30	Selective alpha2-adrenergic properties of dexmedetomidine over clonidine in the human forearm. Journal of Applied Physiology, 2005 , 99, 587-92	3.7	51
29	Combined NO and PG inhibition augments alpha-adrenergic vasoconstriction in contracting human skeletal muscle. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2004 , 287, H2576-84	5.2	75
28	Local inhibition of nitric oxide and prostaglandins independently reduces forearm exercise hyperaemia in humans. <i>Journal of Physiology</i> , 2004 , 557, 599-611	3.9	142
27	Effects of midodrine on exercise-induced hypotension and blood pressure recovery in autonomic failure. <i>Journal of Applied Physiology</i> , 2004 , 97, 1978-84	3.7	22
26	Exogenous NO administration and alpha-adrenergic vasoconstriction in human limbs. <i>Journal of Applied Physiology</i> , 2003 , 95, 2370-4	3.7	38
25	Failure of systemic hypoxia to blunt alpha-adrenergic vasoconstriction in the human forearm. Journal of Physiology, 2003 , 549, 985-94	3.9	48
24	Alpha-adrenergic vascular responsiveness during postexercise hypotension in humans. <i>Journal of Physiology</i> , 2003 , 550, 279-86	3.9	53
23	Blunted sympathetic vasoconstriction in contracting skeletal muscle of healthy humans: is nitric oxide obligatory?. <i>Journal of Physiology</i> , 2003 , 553, 281-92	3.9	128
22	Rapid Report. Journal of Physiology, 2003 , 547, 971-976	3.9	15
21	alpha1- and alpha2-adrenergic vasoconstriction is blunted in contracting human muscle. <i>Journal of Physiology</i> , 2003 , 547, 971-6	3.9	77
20	Hypoxic regulation of blood flow in humans. Alpha-adrenergic receptors and functional sympatholysis in skeletal muscle. <i>Advances in Experimental Medicine and Biology</i> , 2003 , 543, 237-48	3.6	5

19	Effects of chronic sympathectomy on vascular function in the human forearm. <i>Journal of Applied Physiology</i> , 2002 , 92, 2019-25	3.7	58
18	Regular aerobic exercise and the age-related increase in carotid artery intima-media thickness in healthy men. <i>Journal of Applied Physiology</i> , 2002 , 92, 1458-64	3.7	111
17	Age-related reductions in appendicular skeletal muscle mass: association with habitual aerobic exercise status. <i>Clinical Physiology and Functional Imaging</i> , 2002 , 22, 169-72	2.4	30
16	Post-junctional alpha-adrenoceptors and basal limb vascular tone in healthy men. <i>Journal of Physiology</i> , 2002 , 540, 1103-10	3.9	53
15	Aging and forearm postjunctional alpha-adrenergic vasoconstriction in healthy men. <i>Circulation</i> , 2002 , 106, 1349-54	16.7	144
14	Regular endurance exercise induces expansive arterial remodelling in the trained limbs of healthy men. <i>Journal of Physiology</i> , 2001 , 534, 287-95	3.9	172
13	Reductions in basal limb blood flow and vascular conductance with human ageing: role for augmented alpha-adrenergic vasoconstriction. <i>Journal of Physiology</i> , 2001 , 536, 977-83	3.9	120
12	Age-related decreases in basal limb blood flow in humans: time course, determinants and habitual exercise effects. <i>Journal of Physiology</i> , 2001 , 531, 573-9	3.9	88
11	Carotid artery wall hypertrophy with age is related to local systolic blood pressure in healthy men. <i>Arteriosclerosis, Thrombosis, and Vascular Biology,</i> 2001 , 21, 82-7	9.4	94
10	Central arterial compliance is associated with age- and habitual exercise-related differences in cardiovagal baroreflex sensitivity. <i>Circulation</i> , 2001 , 104, 1627-32	16.7	155
9	Age-associated changes in cardiovagal baroreflex sensitivity are related to central arterial compliance. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2001 , 281, H284-9	5.2	155
8	Smaller age-associated reductions in leg venous compliance in endurance exercise-trained men. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2001 , 281, H1267-73	5.2	61
7	Regular aerobic exercise modulates age-associated declines in cardiovagal baroreflex sensitivity in healthy men. <i>Journal of Physiology</i> , 2000 , 529 Pt 1, 263-71	3.9	123
6	Age-associated arterial wall thickening is related to elevations in sympathetic activity in healthy humans. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2000 , 278, H1205-10	5.2	124
5	Age-related increase in femoral intima-media thickness in healthy humans. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2000 , 20, 2172	9.4	4
4	Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. <i>Circulation</i> , 2000 , 102, 1351-7	16.7	655
3	Aging, habitual exercise, and dynamic arterial compliance. <i>Circulation</i> , 2000 , 102, 1270-5	16.7	824
2	Limb blood flow and vascular conductance are reduced with age in healthy humans: relation to elevations in sympathetic nerve activity and declines in oxygen demand. <i>Circulation</i> , 1999 , 100, 164-70	16.7	233

Hemodynamic sequelae of age-related increases in arterial stiffness in healthy women. *American Journal of Cardiology*, **1998**, 82, 1152-5, A10

29

3