
Andrej Tillinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9404414/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single intranasal neuropeptide Y infusion attenuates development of PTSD-like symptoms to traumatic stress in rats. Neuroscience, 2013, 236, 298-312.	1.1	154
2	Gene Expression of Phenylethanolamine N-Methyltransferase in Corticotropin-Releasing Hormone Knockout Mice During Stress Exposure. Cellular and Molecular Neurobiology, 2006, 26, 733-752.	1.7	46
3	Vesicular Monoamine Transporters (VMATs) in Adrenal Chromaffin Cells: Stress-Triggered Induction of VMAT2 and Expression in Epinephrine Synthesizing Cells. Cellular and Molecular Neurobiology, 2010, 30, 1459-1465.	1.7	36
4	Sympathectomy reduces tumor weight and affects expression of tumor-related genes in melanoma tissue in the mouse. Stress, 2016, 19, 528-534.	0.8	30
5	Transgenic Mice with â^'6A Haplotype of the Human Angiotensinogen Gene Have Increased Blood Pressure Compared with â^'6G Haplotype*. Journal of Biological Chemistry, 2010, 285, 41172-41186.	1.6	20
6	The vagus nerve role in antidepressants action: Efferent vagal pathways participate in peripheral anti-inflammatory effect of fluoxetine. Neurochemistry International, 2019, 125, 47-56.	1.9	20
7	Regulation of Gene Expression of Catecholamine Biosynthetic Enzymes in Dopamineâ€Î²â€Hydroxylase―and CRHâ€Knockout Mice Exposed to Stress. Annals of the New York Academy of Sciences, 2008, 1148, 257-268.	1.8	16
8	Stressâ€induced changes in gene expression of urocortin 2 and other <scp>CRH</scp> peptides in rat adrenal medulla: involvement of glucocorticoids. Journal of Neurochemistry, 2013, 125, 185-192.	2.1	16
9	Hypergravityâ€induced Increase in Plasma Catecholamine and Corticosterone Levels in Telemetrically Collected Blood of Rats during Centrifugation. Annals of the New York Academy of Sciences, 2008, 1148, 201-208.	1.8	15
10	Subdiaphragmatic vagotomy enhances stress-induced epinephrine release in rats. Autonomic Neuroscience: Basic and Clinical, 2015, 190, 20-25.	1.4	15
11	Regulation of Adrenoceptor and Muscarinic Receptor Gene Expression after Single and Repeated Stress. Annals of the New York Academy of Sciences, 2008, 1148, 367-376.	1.8	14
12	Modulation by 6-hydroxydopamine of expression of the phenylethanolamine <i>N</i> -methyltransferase (PNMT) gene in the rat heart during immobilization stress. Stress, 2006, 9, 207-213.	0.8	13
13	Regulation of angiotensin II type 2 receptor gene expression in the adrenal medulla by acute and repeated immobilization stress. Journal of Endocrinology, 2012, 215, 291-301.	1.2	12
14	Stress Triggered Changes in Expression of Genes for Neurosecretory Granules in Adrenal Medulla. Cellular and Molecular Neurobiology, 2012, 32, 795-800.	1.7	12
15	Adrenergic and calcium modulation of the heart in stress: From molecular biology to function. Stress, 2007, 10, 173-184.	0.8	11
16	Bradykinin B2 Receptor in the Adrenal Medulla of Male Rats and Mice: Glucocorticoid-Dependent Increase With Immobilization Stress. Endocrinology, 2013, 154, 3729-3738.	1.4	11
17	The Response of Plasma Catecholamines in Rats Simultaneously Exposed to Immobilization and Painful Stimuli. Annals of the New York Academy of Sciences, 2008, 1148, 196-200.	1.8	10
18	Repeated Immobilization Stress Increases Expression of β3-Adrenoceptor in the Left Ventricle and Atrium of the Rat Heart. Stress and Health, 2014, 30, 301-309.	1.4	10

ANDREJ TILLINGER

#	Article	IF	CITATIONS
19	Heart Adrenoceptor Gene Expression and Binding Sites in the Human Failing Heart. Annals of the New York Academy of Sciences, 2008, 1148, 400-408.	1.8	9
20	Chemical sympathectomy increases neutrophil-to-lymphocyte ratio in tumor-bearing rats but does not influence cancer progression. Journal of Neuroimmunology, 2015, 278, 255-261.	1.1	9
21	Phenylethanolamine <i>N</i> â€Methyltransferase Gene Expression in the Heart and Blood Pressure Response to Oxytocin Treatment in Rats Exposed to Voluntary Wheel Running. Annals of the New York Academy of Sciences, 2008, 1148, 302-307.	1.8	8
22	Regulation of nonclassical renin-angiotensin system receptor gene expression in the adrenal medulla by acute and repeated immobilization stress. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R517-R529.	0.9	8
23	Sympathectomized tumor-bearing mice survive longer but develop bigger melanomas. Endocrine Regulations, 2016, 50, 207-214.	0.5	7
24	A systems approach identifies co-signaling molecules of early growth response 1 transcription factor in immobilization stress. BMC Systems Biology, 2014, 8, 100.	3.0	6
25	Gene Expression of Adrenoceptors in the Hearts of Coldâ€Acclimated Rats Exposed to a Novel Stressor. Annals of the New York Academy of Sciences, 2008, 1148, 393-399.	1.8	5
26	Cachexia induced by Yoshida ascites hepatoma in Wistar rats is not associated with inflammatory response in the spleen or brain. Journal of Neuroimmunology, 2019, 337, 577068.	1.1	5
27	Gene expression of the phenylethanolamine N-methyltransferase is differently modulated in cardiac atria and ventricles. General Physiology and Biophysics, 2006, 25, 355-64.	0.4	5
28	Effect of Haloperidol and Olanzapine on Hippocampal Cells' Proliferation in Animal Model of Schizophrenia. International Journal of Molecular Sciences, 2022, 23, 7711.	1.8	5
29	Prolactin Response to Formalin Is Related to the Acute Nociceptive Response and It Is Attenuated by Combined Application of Different Stressors. Neuroendocrinology, 2007, 86, 69-76.	1.2	4
30	Heart ventricles specific stress-induced changes in β-adrenoceptors and muscarinic receptors. General Physiology and Biophysics, 2014, 33, 357-364.	0.4	4
31	Ambiguous effect of signals transmitted by the vagus nerve on fibrosarcoma incidence and survival of tumor-bearing rats. Neuroscience Letters, 2015, 593, 90-94.	1.0	4
32	Chronic liquid nutrition intake induces obesity and considerable but reversible metabolic alterations in Wistar rats. Journal of Physiology and Biochemistry, 2016, 72, 225-243.	1.3	4
33	Changes in gene expression in brain structures related to visceral sensation, autonomic functions, food intake, and cognition in melanomaâ€bearing mice. European Journal of Neuroscience, 2020, 51, 2376-2393.	1.2	4
34	Glucocorticoid withdrawal affects stressâ€induced changes in urocortin 2 gene expression in the rat adrenal medulla and brain. Journal of Neuroendocrinology, 2018, 30, e12595.	1.2	3
35	Vagotomy Affects Lipopolysaccharide-Induced Changes of Urocortin 2 Gene Expression in the Brain and on the Periphery. Neurochemical Research, 2021, 46, 159-164.	1.6	3
36	Chronic propranolol treatment moderately attenuated development of N-methyl-N-nitrosourea-induced mammary carcinoma in female rats. Anti-Cancer Drugs, 2021, 32, 1011-1018.	0.7	3

ANDREJ TILLINGER

#	Article	IF	CITATIONS
37	Haloperidol and aripiprazole impact on the BDNF and glucocorticoid receptor levels in the rat hippocampus and prefrontal cortex: effect of the chronic mild stress. Endocrine Regulations, 2021, 55, 153-162.	0.5	3
38	Stressors affect urocortin 1 and urocortin 2 gene expression in rat spleen: The role of glucocorticoids. Journal of Neuroimmunology, 2019, 336, 577030.	1.1	2
39	Mechanisms of a Decapitation-Induced Increase in the Plasma Catecholamine Levels in Rats. Neurophysiology, 2012, 44, 216-220.	0.2	1
40	Haloperidol and aripiprazole affects CRH system and behaviour of animals exposed to chronic mild stress. Neurochemistry International, 2022, 152, 105224.	1.9	1
41	Analysis of Signalling Pathways Triggering Transcriptional Changes in Adrenal Medulla with Single and Repeated Stress. FASEB Journal, 2009, 23, 626.5.	0.2	0
42	Selective Regulation of Expression of Vesicular Monoamine Transporters in Adrenal Chromaffin Cells by Stress. FASEB Journal, 2010, 24, 1040.5.	0.2	0
43	Differential Responses of Genes for Neurosecretory Granules in the Rat Adrenal Medulla to Acute and Repeated Stress. FASEB Journal, 2012, 26, 1094.8.	0.2	0
44	Stressâ€induced changes in gene expression of urocortin 2 and other corticotrophinâ€releasing hormone family members in rat adrenal medulla. FASEB Journal, 2013, 27, 936.9.	0.2	0
45	Stressâ€triggered regulation of the adrenomedullary angiotensin II type 2 receptor. FASEB Journal, 2013, 27, 936.8.	0.2	0
46	Neuropeptide Y (NPY) infusion attenuates development of PTSDâ€ l ike symptoms to traumatic stress in rats. FASEB Journal, 2013, 27, 1100.10.	0.2	0
47	The Adrenomedullary Angiotensin II Type 2 Receptor. , 2014, , 242.		0
48	Neuropeptide Y Infusion to Rats Attenuates Development of PTSD-Like Symptoms to Traumatic Stress. , 2014, , 215-216.		0