Xavier Lambin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9404216/publications.pdf

Version: 2024-02-01

34076 51562 9,191 188 52 86 citations h-index g-index papers 190 190 190 10149 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spatial population dynamics: analyzing patterns and processes of population synchrony. Trends in Ecology and Evolution, 1999, 14, 427-432.	4.2	668
2	Identification of 100 fundamental ecological questions. Journal of Ecology, 2013, 101, 58-67.	1.9	605
3	Species Interactions in a Parasite Community Drive Infection Risk in a Wildlife Population. Science, 2010, 330, 243-246.	6.0	461
4	Analysis of aggregation, a worked example: numbers of ticks on red grouse chicks. Parasitology, 2001, 122, 563-569.	0.7	325
5	Europe-Wide Dampening of Population Cycles in Keystone Herbivores. Science, 2013, 340, 63-66.	6.0	214
6	Cyclic dynamics in field vole populations and generalist predation. Journal of Animal Ecology, 2000, 69, 106-119.	1.3	179
7	Spatial asynchrony and periodic travelling waves in cyclic populations of field voles. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 1491-1496.	1.2	159
8	Boomâ€bust dynamics in biological invasions: towards an improved application of the concept. Ecology Letters, 2017, 20, 1337-1350.	3.0	143
9	Natal Philopatry, Competition for Resources, and Inbreeding Avoidance in Townsend's Voles (Microtus Townsendii). Ecology, 1994, 75, 224-235.	1.5	136
10	Vole population cycles in northern and southern Europe: Is there a need for different explanations for single pattern?. Journal of Animal Ecology, 2006, 75, 340-349.	1.3	134
11	Host–pathogen time series data in wildlife support a transmission function between density and frequency dependence. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7905-7909.	3.3	118
12	Life-history traits of voles in a fluctuating population respond to the immediate environment. Nature, 2001, 411, 1043-1045.	13.7	113
13	Relative Importance of <i>Ixodes ricinus</i> and <i>Ixodes trianguliceps</i> as Vectors for <i>Anaplasma phagocytophilum</i> and <i>Babesia microti</i> in Field Vole (<i>Microtus agrestis</i>) Populations. Applied and Environmental Microbiology, 2008, 74, 7118-7125.	1.4	108
14	Delineating <i> Anaplasma phagocytophilum < /i > Ecotypes in Coexisting, Discrete Enzootic Cycles. Emerging Infectious Diseases, 2009, 15, 1948-1954.</i>	2.0	108
15	The impact of weasel predation on cyclic field-vole survival: the specialist predator hypothesis contradicted. Journal of Animal Ecology, 2002, 71, 946-956.	1.3	106
16	Parasite interactions in natural populations: insights from longitudinal data. Parasitology, 2008, 135, 767-781.	0.7	104
17	Turning back the tide of American mink invasion at an unprecedented scale through community participation and adaptive management. Biological Conservation, 2011, 144, 575-583.	1.9	102
18	The impact of population kinâ€structure on nestling survival in Townsend's voles, Microtus townsendii. Journal of Animal Ecology, 1998, 67, 1-16.	1.3	92

#	Article	IF	CITATIONS
19	Resting and daily energy expenditures of free-living field voles are positively correlated but reflect extrinsic rather than intrinsic effects. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14057-14062.	3.3	92
20	Red deer Cervus elephus vigilance behaviour differs with habitat and type of human disturbance. Wildlife Biology, 2008, 14, 81-91.	0.6	89
21	Influence of Female Relatedness on the Demography of Townsend's Vole Populations in Spring. Journal of Animal Ecology, 1993, 62, 536.	1.3	86
22	Effects of testosterone on breeding density, breeding success and survival of red grouse. Proceedings of the Royal Society B: Biological Sciences, 1994, 258, 175-180.	1.2	86
23	Changes over Time in the Spatiotemporal Dynamics of Cyclic Populations of Field Voles (Microtus) Tj ETQq $1\ 1\ 0$.	784314 rg	gBT ₈₄ Overlock
24	Mycobacterium microti Infection (Vole Tuberculosis) in Wild Rodent Populations. Journal of Clinical Microbiology, 2002, 40, 3281-3285.	1.8	83
25	The role of species charisma in biological invasions. Frontiers in Ecology and the Environment, 2020, 18, 345-353.	1.9	81
26	A proposed unified framework to describe the management of biological invasions. Biological Invasions, 2020, 22, 2633-2645.	1.2	80
27	Use of coupled oscillator models to understand synchrony and travelling waves in populations of the field vole Microtus agrestis in northern England. Journal of Applied Ecology, 2000, 37, 148-158.	1.9	79
28	Fishing for mammals: Landscapeâ€level monitoring of terrestrial and semiâ€aquatic communities using eDNA from riverine systems. Journal of Applied Ecology, 2020, 57, 707-716.	1.9	79
29	Can Changes in Female Relatedness Influence Microtine Population Dynamics?. Oikos, 1991, 61, 126.	1.2	78
30	Landscape barriers reduce gene flow in an invasive carnivore: geographical and local genetic structure of American mink in Scotland. Molecular Ecology, 2009, 18, 1601-1615.	2.0	77
31	Patterns and processes of dispersal behaviour in arvicoline rodents. Molecular Ecology, 2012, 21, 505-523.	2.0	76
32	Recent large-scale range expansion and outbreaks of the common vole (Microtus arvalis) in NW Spain. Basic and Applied Ecology, 2013, 14, 432-441.	1.2	76
33	A demographic, spatially explicit patch occupancy model of metapopulation dynamics and persistence. Ecology, 2014, 95, 3149-3160.	1.5	72
34	Spatial organization and mating system of Microtus townsendii. Behavioral Ecology and Sociobiology, 1991, 28, 353-363.	0.6	71
35	Parentage assignment detects frequent and largeâ€scale dispersal in water voles. Molecular Ecology, 2003, 12, 1939-1949.	2.0	70
36	The decline of Common Kestrels Falco tinnunculus in a forested area of northern England: the role of predation by Northern Goshawks Accipiter gentilis. Ibis, 2003, 145, 472-483.	1.0	67

3

#	Article	IF	CITATIONS
37	Contrasting dynamics of Bartonella spp. in cyclic field vole populations: the impact of vector and host dynamics. Parasitology, 2007, 134, 413.	0.7	67
38	Are silica defences in grasses driving vole population cycles?. Biology Letters, 2008, 4, 419-422.	1.0	67
39	Scale invariant spatio-temporal patterns of field vole density. Journal of Animal Ecology, 2001, 70, 101-111.	1.3	65
40	Generation of periodic waves by landscape features in cyclic predator–prey systems. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 327-334.	1.2	63
41	Cowpox virus infection in natural field vole <i>Microtus agrestis</i> populations: significant negative impacts on survival. Journal of Animal Ecology, 2008, 77, 110-119.	1.3	63
42	Disease dynamics in cyclic populations of field voles (Microtus agrestis): cowpox virus and vole tuberculosis (Mycobacterium microti). Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 859-867.	1.2	62
43	Water vole in the Scottish uplands: distribution patterns of disturbed and pristine populations ahead and behind the American mink invasion front. Animal Conservation, 2001, 4, 187-194.	1.5	59
44	Spatioâ€temporal variation in the strength and mode of selection acting on major histocompatibility complex diversity in water vole (<i>Arvicola terrestris</i>) metapopulations. Molecular Ecology, 2009, 18, 80-92.	2.0	59
45	Spatial arrangement of kin affects recruitment success in young male red grouse. Oikos, 2000, 90, 261-270.	1.2	58
46	High-Resolution Genetic Fingerprinting of European Strains of Anaplasma phagocytophilum by Use of Multilocus Variable-Number Tandem-Repeat Analysis. Journal of Clinical Microbiology, 2007, 45, 1771-1776.	1.8	58
47	The Influence of Philosophical Perspectives in Integrative Research: a Conservation Case Study in the Cairngorms National Park. Ecology and Society, 2008, 13, .	1.0	58
48	Sympatriclxodes triangulicepsandlxodes ricinusTicks Feeding on Field Voles (Microtus agrestis): Potential for Increased Risk ofAnaplasma phagocytophilumin the United Kingdom?. Vector-Borne and Zoonotic Diseases, 2006, 6, 404-410.	0.6	57
49	Widespread gene flow and high genetic variability in populations of water voles Arvicola terrestris in patchy habitats. Molecular Ecology, 2006, 15, 1455-1466.	2.0	56
50	Adaptive precocial reproduction in voles: reproductive costs and multivoltine life-history strategies in seasonal environments. Journal of Animal Ecology, 2001, 70, 191-200.	1.3	55
51	"Living on the edge― The role of field margins for common vole (Microtus arvalis) populations in recently colonised Mediterranean farmland. Agriculture, Ecosystems and Environment, 2016, 231, 206-217.	2.5	54
52	Rate of exposure of a sentinel species, invasive American mink (Neovison vison) in Scotland, to anticoagulant rodenticides. Science of the Total Environment, 2016, 569-570, 1013-1021.	3.9	54
53	Population Cycles and Parasitism. Science, 1999, 286, 2425a-2425.	6.0	53
54	Delayed induced silica defences in grasses and their potential for destabilising herbivore population dynamics. Oecologia, 2012, 170, 445-456.	0.9	53

#	Article	IF	CITATIONS
55	Silicon, endophytes and secondary metabolites as grass defenses against mammalian herbivores. Frontiers in Plant Science, 2014, 5, 478.	1.7	53
56	Sex Ratio Variation in Relation to Female Philopatry in Townsend's Voles. Journal of Animal Ecology, 1994, 63, 945.	1.3	52
57	Spacing system of the tundra vole (<i>Microtus oeconomus</i>) during the breeding season in Canada's western Arctic. Canadian Journal of Zoology, 1992, 70, 2068-2072.	0.4	50
58	Natal conditions alter age-specific reproduction but not survival or senescence in a long-lived bird of prey. Journal of Animal Ecology, 2011, 80, 968-975.	1.3	50
59	Metapopulation processes and persistence in remnant water vole populations. Oikos, 2001, 95, 31-42.	1.2	49
60	The enemy of my enemy is my friend: native pine marten recovery reverses the decline of the red squirrel by suppressing grey squirrel populations. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172603.	1.2	49
61	Delayed Densityâ€Dependent Season Length Alone Can Lead to Rodent Population Cycles. American Naturalist, 2006, 167, 695-704.	1.0	48
62	Dampening prey cycle overrides the impact of climate change on predator population dynamics: a longâ€ŧerm demographic study on tawny owls. Global Change Biology, 2014, 20, 1770-1781.	4.2	48
63	The Common Shrew (<i>Sorex araneus</i>): A Neglected Host of Tick-Borne Infections?. Vector-Borne and Zoonotic Diseases, 2011, 11, 947-953.	0.6	47
64	Spatial distribution of genetic relatedness in a moorland population of red grouse (Lagopus lagopus) Tj ETQq0	0 0 rgBT /C	Overlock 10 Tf
65	Cowpox virus infection in natural field vole Microtus agrestis populations: delayed density dependence and individual risk. Journal of Animal Ecology, 2006, 75, 1416-1425.		
		1.3	45
66	Disease effects on reproduction can cause population cycles in seasonal environments. Journal of Animal Ecology, 2008, 77, 378-389.	1.3	45
66	Disease effects on reproduction can cause population cycles in seasonal environments. Journal of Animal Ecology, 2008, 77, 378-389. The large-scale removal of mammalian invasive alien species in Northern Europe. Pest Management Science, 2017, 73, 273-279.		
	Animal Ecology, 2008, 77, 378-389. The large-scale removal of mammalian invasive alien species in Northern Europe. Pest Management	1.3	45
67	Animal Ecology, 2008, 77, 378-389. The large-scale removal of mammalian invasive alien species in Northern Europe. Pest Management Science, 2017, 73, 273-279. Seasonal host dynamics drive the timing of recurrent epidemics in a wildlife population. Proceedings	1.3	45 45
68	Animal Ecology, 2008, 77, 378-389. The large-scale removal of mammalian invasive alien species in Northern Europe. Pest Management Science, 2017, 73, 273-279. Seasonal host dynamics drive the timing of recurrent epidemics in a wildlife population. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1603-1610. Multi-season occupancy analysis reveals large scale competitive exclusion of the critically endangered European mink by the invasive non-native American mink in Spain. Biological Conservation,	1.3 1.7 1.2	45 45 44
67 68 69	Animal Ecology, 2008, 77, 378-389. The large-scale removal of mammalian invasive alien species in Northern Europe. Pest Management Science, 2017, 73, 273-279. Seasonal host dynamics drive the timing of recurrent epidemics in a wildlife population. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1603-1610. Multi-season occupancy analysis reveals large scale competitive exclusion of the critically endangered European mink by the invasive non-native American mink in Spain. Biological Conservation, 2014, 176, 21-29. Phylogeographic structure and postglacial evolutionary history of water voles (Arvicola terrestris)	1.3 1.7 1.2	45 45 44 44

#	Article	IF	Citations
73	Tuberculosis (Mycobacterium microti) in wild field vole populations. Parasitology, 2008, 135, 309-317.	0.7	40
74	Multiâ€scale processes in metapopulations: contributions of stage structure, rescue effect, and correlated extinctions. Ecology, 2012, 93, 2465-2473.	1.5	40
75	Range expansion of an invasive species through a heterogeneous landscape – the case of American mink in Scotland. Diversity and Distributions, 2015, 21, 888-900.	1.9	40
76	Irruptive mammal host populations shape tularemia epidemiology. PLoS Pathogens, 2017, 13, e1006622.	2.1	40
77	Mechanisms for delayed density-dependent reproductive traits in field voles, Microtus agrestis: the importance of inherited environmental effects. Oikos, 2001, 95, 185-197.	1.2	39
78	The Effects of the Size and Shape of Landscape Features on the Formation of Traveling Waves in Cyclic Populations. American Naturalist, 2003, 162, 503-513.	1.0	39
79	Optimal Body Size and Energy Expenditure during Winter: Why Are Voles Smaller in Declining Populations?. American Naturalist, 2004, 163, 442-457.	1.0	39
80	Invasive crayfish reduce food limitation of alien American mink and increase their resilience to control. Oecologia, 2014, 174, 427-434.	0.9	39
81	Fox predation on cyclic field vole populations in Britain. Ecography, 1999, 22, 575-581.	2.1	38
82	Temporal changes in kin structure through a population cycle in a territorial bird, the red grouse <i>Lagopus lagopus scoticus</i> . Molecular Ecology, 2008, 17, 2544-2551.	2.0	37
83	Quantifying the contribution of immigration to population dynamics: a review of methods, evidence and perspectives in birds and mammals. Biological Reviews, 2019, 94, 2049-2067.	4.7	37
84	Spatial synchrony in field vole Microtus agrestis abundance in a coniferous forest in northern England: the role of vole-eating raptors. Journal of Applied Ecology, 2000, 37, 136-147.	1.9	36
85	Dispersal, landscape and travelling waves in cyclic vole populations. Ecology Letters, 2014, 17, 53-64.	3.0	36
86	Metapopulation genetic structure in the water vole, Arvicola terrestris, in NE Scotland. Biological Journal of the Linnean Society, 1999, 68, 159-171.	0.7	35
87	When do young birds disperse? Tests from studies of golden eagles in Scotland. BMC Ecology, 2013, 13, 42.	3.0	34
88	Movement patterns of a specialist predator, the weaselMustela nivalis exploiting asynchronous cyclic field voleMicrotus agrestis populations. Acta Theriologica, 2007, 52, 13-25.	1.1	32
89	Do rabbits eat voles? Apparent competition, habitat heterogeneity and largeâ€scale coexistence under mink predation. Ecology Letters, 2009, 12, 1201-1209.	3.0	32
90	Density- and age-dependent reproduction partially compensates culling efforts of invasive non-native American mink. Biological Invasions, 2015, 17, 2645-2657.	1.2	31

#	Article	IF	Citations
91	Tularemia Outbreaks and Common Vole (⟨i⟩Microtus arvalis⟨/i⟩) Irruptive Population Dynamics in Northwestern Spain, 1997–2014. Vector-Borne and Zoonotic Diseases, 2015, 15, 568-570.	0.6	30
92	Density-Dependent Prevalence of <i>Francisella tularensis</i> in Fluctuating Vole Populations, Northwestern Spain. Emerging Infectious Diseases, 2017, 23, 1377-1379.	2.0	30
93	Empowered communities or "cheap labour� Engaging volunteers in the rationalised management of invasive alien species in Great Britain. Journal of Environmental Management, 2019, 229, 102-111.	3.8	30
94	Effects of abundance on infection in natural populations: Field voles and cowpox virus. Epidemics, 2009, 1, 35-46.	1.5	29
95	Models of Red Grouse Cycles. A Family Affair?. Oikos, 1998, 82, 574.	1.2	28
96	Experimental translocation of juvenile water voles in a Scottish lowland metapopulation. Population Ecology, 2009, 51, 289-295.	0.7	27
97	Using population genetic structure of an invasive mammal to target control efforts – An example of the American mink in Scotland. Biological Conservation, 2013, 167, 35-42.	1.9	27
98	<i>Mycobacterium microti</i> Tuberculosis in Its Maintenance Host, the Field Vole (<i>Microtus) Tj ETQq0 0 0 r</i>	gBT/Qver	lock_10 Tf 50
99	The compensatory potential of increased immigration following intensive American mink population control is diluted by male-biased dispersal. Biological Invasions, 2016, 18, 3047-3061.	1.2	27
100	Management Policies for Invasive Alien Species: Addressing the Impacts Rather than the Species. BioScience, 2021, 71, 174-185.	2.2	27
101	Home range shifts by breeding female Townsend's voles (Microtus townsendii $\hat{a} \in \hat{S}$): a test of the territory bequeathal hypothesis. Behavioral Ecology and Sociobiology, 1997, 40, 363-372.	0.6	26
102	Understanding the Determinants of Volunteer Retention Through Captureâ€Recapture Analysis: Answering Social Science Questions Using a Wildlife Ecology Toolkit. Conservation Letters, 2013, 6, 391-401.	2.8	26
103	Advances in population ecology and species interactions in mammals. Journal of Mammalogy, 2019, 100, 965-1007.	0.6	25
104	Delayed densityâ€dependent onset of spring reproduction in a fluctuating population of field voles. Oikos, 2011, 120, 934-940.	1.2	24
105	Individual growth rates in natural field vole, Microtus agrestis, populations exhibiting cyclic population dynamics. Oecologia, 2010, 162, 653-661.	0.9	23
106	Host–parasite interactions in a fragmented landscape. International Journal for Parasitology, 2013, 43, 27-35.	1.3	23
107	To be or not to be associated: power study of four statistical modeling approaches to identify parasite associations in cross-sectional studies. Frontiers in Cellular and Infection Microbiology, 2014, 4, 62.	1.8	23
108	Host–parasite biology in the real world: the field voles of Kielder. Parasitology, 2014, 141, 997-1017.	0.7	23

#	Article	IF	Citations
109	Age and sexâ€selective predation moderate the overall impact of predators. Journal of Animal Ecology, 2015, 84, 692-701.	1.3	23
110	Zoonotic pathogens in fluctuating common vole (<i>Microtus arvalis</i>) populations: occurrence and dynamics. Parasitology, 2019, 146, 389-398.	0.7	23
111	Fluctuations in age structure and their variable influence on population growth. Functional Ecology, 2020, 34, 203-216.	1.7	23
112	Numerical response of a mammalian specialist predator to multiple prey dynamics in Mediterranean farmlands. Ecology, 2019, 100, e02776.	1.5	22
113	Unintentional effects of environmentally-friendly farming practices: Arising conflicts between zero-tillage and a crop pest, the common vole (Microtus arvalis). Agriculture, Ecosystems and Environment, 2019, 272, 105-113.	2.5	22
114	Estimating the annual number of breeding attempts from breeding dates using mixture models. Ecology Letters, 2009, 12, 1184-1193.	3.0	21
115	Bayesian reconstitution of environmental change from disparate historical records: hedgerow loss and farmland bird declines. Methods in Ecology and Evolution, 2011, 2, 86-94.	2.2	21
116	Effects of human disturbance on the diet composition of wild red deer (Cervus elaphus). European Journal of Wildlife Research, 2011, 57, 939-948.	0.7	21
117	Accounting for false positive detection error induced by transient individuals. Wildlife Research, 2013, 40, 490.	0.7	21
118	Food availability and predation risk, rather than intrinsic attributes, are the main factors shaping the reproductive decisions of a longâ€ived predator. Journal of Animal Ecology, 2016, 85, 892-902.	1.3	21
119	Territorial behaviour and population dynamics in red grouse Lagopus lagopus scoticus. II. Population models. Journal of Animal Ecology, 2003, 72, 1083-1096.	1.3	19
120	Inferring Pattern and Process in Small Mammal Metapopulations. , 2004, , 515-540.		19
121	The relative efficiency of two commercial liveâ€traps for small mammals. Journal of Zoology, 1997, 242, 400-404.	0.8	19
122	Size-mediated, density-dependent cannibalism in the signal crayfish Pacifastacus leniusculus (Dana,) Tj ETQq0 0 (O rgBT /Ov	erlock 10 Tf 5
123	Demographic and genetic structure of fossorial water voles (Arvicola terrestris) on Scottish islands. Journal of Zoology, 2003, 259, 23-29.	0.8	18
124	Testing the specialist predator hypothesis for vole cycles. Trends in Ecology and Evolution, 2003, 18, 493.	4.2	18
125	Summertime activity patterns of common weaselsMustela nivalis vulgaris under differing prey abundances in grassland habitats. Acta Theriologica, 2005, 50, 67-79.	1.1	18
126	The challenges of longâ€term invasive mammal management: lessons from the UK. Mammal Review, 2020, 50, 136-146.	2.2	18

#	Article	IF	Citations
127	Vole cycles. Trends in Ecology and Evolution, 1995, 10, 204.	4.2	17
128	The kin-facilitation hypothesis for red grouse population cycles: territory sharing between relatives. Ecological Modelling, 2000, 127, 53-63.	1.2	17
129	Densityâ€dependent increase in superpredation linked to food limitation in a recovering population of northern goshawks <i>Accipiter gentilis</i> . Journal of Avian Biology, 2017, 48, 1205-1215.	0.6	17
130	Determinants of the Synchrony of Reproduction in Townsend's Voles, Microtus townsendii. Oikos, 1993, 67, 107.	1.2	16
131	Experimental evidence that livestock grazing intensity affects cyclic vole population regulation processes. Population Ecology, 2014, 56, 55-61.	0.7	16
132	Decline of the Orkney Hen HarrierCircus cyaneuspopulation: do changes to demographic parameters and mating system fit a declining food hypothesis?. Bird Study, 2005, 52, 18-24.	0.4	15
133	The effects of density-dependent dispersal on the spatiotemporal dynamics of cyclic populations. Journal of Theoretical Biology, 2008, 254, 264-274.	0.8	15
134	Social relations in <i>Apodemus sylvaticus</i> as revealed by videoâ€observation in the wild. Journal of Zoology, 1988, 216, 587-593.	0.8	13
135	The kin facilitation hypothesis for red grouse population cycles: territorial dynamics of the family cluster. Ecological Modelling, 2002, 147, 291-307.	1.2	13
136	Abundance thresholds and the underlying ecological processes: Field voles Microtus agrestis in a fragmented landscape. Agriculture, Ecosystems and Environment, 2011, 144, 364-369.	2.5	13
137	Experimental evidence that livestock grazing intensity affects the activity of a generalist predator. Acta Oecologica, 2013, 49, 12-16.	0.5	13
138	Evolution of Predator Dispersal in Relation to Spatio-Temporal Prey Dynamics: How Not to Get Stuck in the Wrong Place!. PLoS ONE, 2013, 8, e54453.	1.1	13
139	The value of considering demographic contributions to connectivity: a review. Ecography, 2022, 2022, .	2.1	13
140	Adaptive precocial reproduction in voles: reproductive costs and multivoltine lifeâ€history strategies in seasonal environments. Journal of Animal Ecology, 2001, 70, 191-200.	1.3	12
141	Trophic transfer of pesticides: The fine line between predator–prey regulation and pesticide–pest regulation. Journal of Applied Ecology, 2020, 57, 806-818.	1.9	12
142	" <i>Got rats</i> ?―Global environmental costs of thirst for milk include acute biodiversity impacts linked to dairy feed production. Global Change Biology, 2018, 24, 2752-2754.	4.2	11
143	Populationâ€level manipulations of field vole densities induce subsequent changes in plant quality but no impacts on vole demography. Ecology and Evolution, 2018, 8, 7752-7762.	0.8	11
144	On the merits and pitfalls of introducing a digital platform to aid conservation management: Volunteer data submission and the mediating role of volunteer coordinators. Journal of Environmental Management, 2020, 265, 110497.	3.8	11

#	Article	IF	CITATIONS
145	MATRILINEAL GENETIC STRUCTURE AND FEMALE-MEDIATED GENE FLOW IN RED GROUSE (LAGOPUS LAGOPUS) 1 Evolution, 2000, 54, 279-289.	Гј ETQq1 1 1.1	0.784314 10
146	A comparison of the dynamical impact of seasonal mechanisms in a herbivore–plant defence system. Theoretical Ecology, 2013, 6, 225-239.	0.4	10
147	Ecological traps for largeâ€scale invasive species control: Predicting settling rules by recolonising American mink postâ€culling. Journal of Applied Ecology, 2018, 55, 1769-1779.	1.9	10
148	The contribution of flight capability to the postâ€fledging dependence period of golden eagles. Journal of Avian Biology, 2018, 49, .	0.6	10
149	CONTAIN: Optimising the long-term management of invasive alien species using adaptive management. NeoBiota, 0, 59, 119-138.	1.0	10
150	Hunted predators: Charisma confounds. Science, 2015, 349, 1294-1294.	6.0	9
151	Body size and habitat use of the common weasel Mustela nivalis vulgaris in Mediterranean farmlands colonised by common voles Microtus arvalis. Mammal Research, 2020, 65, 75-84.	0.6	9
152	Linking Zoonosis Emergence to Farmland Invasion by Fluctuating Herbivores: Common Vole Populations and Tularemia Outbreaks in NW Spain. Frontiers in Veterinary Science, 2021, 8, 698454.	0.9	9
153	Spatial distribution of genetic relatedness in a moorland population of red grouse (Lagopus lagopus) Tj ETQq1 1 C	.784314 r _s 0.7	gBT /Overlo
154	Restoring vertebrate predator populations can provide landscapeâ€scale biological control of established invasive vertebrates: Insights from pine marten recovery in Europe. Global Change Biology, 2022, 28, 5368-5384.	4.2	9
155	Scale invariant spatioâ€temporal patterns of field vole density. Journal of Animal Ecology, 2001, 70, 101-111.	1.3	8
156	Hierarchical spatial segregation of two Mediterranean vole species: the role of patch-network structure and matrix composition. Oecologia, 2016, 182, 253-263.	0.9	8
157	Relationship type affects the reliability of dispersal distance estimated using pedigree inferences in partially sampled populations: A case study involving invasive American mink in Scotland. Molecular Ecology, 2017, 26, 4059-4071.	2.0	8
158	Drivers of survival in a small mammal of conservation concern: An assessment using extensive genetic non-invasive sampling in fragmented farmland. Biological Conservation, 2019, 230, 131-140.	1.9	8
159	Identifying Priorities, Targets, and Actions for the Long-term Social and Ecological Management of Invasive Non-Native Species. Environmental Management, 2022, 69, 140-153.	1.2	8
160	Metapopulation Dynamics of a Burrowing Herbivore Drive Spatio-temporal Dynamics of Riparian Plant Communities. Ecosystems, 2013, 16, 1165-1177.	1.6	7
161	The best defence is not being there: avoidance of larger carnivores is not driven by risk intensity. Journal of Zoology, 2021, 315, 110-122.	0.8	6
162	High connectivity despite high fragmentation: iterated dispersal in a vertebrate metapopulation., 2012, , 405-412.		6

#	Article	IF	CITATIONS
163	Ensuring Capacity Adequacy in Liberalised Electricity Markets. Energy Journal, 2019, 40, .	0.9	6
164	Interspecific coprophagia by wild red foxes: <scp>DNA </scp> metabarcoding reveals a potentially widespread form of commensalism among animals. Ecology and Evolution, 2022, 12, .	0.8	6
165	Controlling invasive species by empowering environmental stakeholders: ecotourism boat operators as potential guardians of wildlife against the invasive American mink. Oryx, 2014, 48, 605-612.	0.5	5
166	Integration of Demand Response in Electricity Market Capacity Mechanisms. Utilities Policy, 2020, 64, 101033.	2.1	5
167	Lethal interactions among forestâ€grouse predators are numerous, motivated by hunger and carcasses, and their impacts determined by the demographic value of the victims. Ecology and Evolution, 2021, 11, 7164-7186.	0.8	5
168	What does conservation research do, when should it stop, and what do we do then?., 2015, , 269-290.		5
169	Contest competition between wood mice and bank voles: is there a winner?. Acta Theriologica, 1989, 34, 385-390.	1.1	5
170	Factors influencing use of freshwater pools by otters, <i>Lutra lutra </i> , in a marine environment. Journal of Zoology, 1997, 243, 825-831.	0.8	4
171	Fox predation on cyclic field vole populations in Britain. Ecography, 1999, 22, 575-581.	2.1	4
172	Microbe Interactions Undermine Predictions—Response. Science, 2011, 331, 145-147.	6.0	4
173	Colonisation dynamics during range expansion is poorly predicted by dispersal in the core range. Ecography, 2019, 42, 1142-1151.	2.1	4
174	Litter Sex Ratio Does Not Determine Natal Dispersal Tendency in Female Townsend's Voles. Oikos, 1994, 69, 353.	1.2	3
175	Genetic markers validate using the natural phenotypic characteristics of shed feathers to identify individual northern goshawks <i>Accipiter gentilis</i> Journal of Avian Biology, 2016, 47, 443-447.	0.6	3
176	Gradients in cyclicity, predation and microtine life history. Researches on Population Ecology, 1998, 40, 137-139.	0.9	2
177	Determination of minimal age of five species of Chusquea bamboos through rhizome analysis as a tool to predict the flowering in southern Chile. Revista Chilena De Historia Natural, 2013, 86, 423-432.	0.5	2
178	Strong inference from transect sign surveys: combining spatial autocorrelation and misclassification occupancy models to quantify the detectability of a recovering carnivore. Wildlife Biology, 2016, 22, 209-216.	0.6	2
179	Proximate causes and fitness consequences of double brooding in female barn owls. Oecologia, 2020, 192, 91-103.	0.9	2
180	The population dynamics of bite-sized predators: prey dependence, territoriality, and mobility., 2018,,.		2

#	Article	IF	CITATIONS
181	Control of an invasive species: the American mink in Great Britain. , 2018, , .		2
182	Determining Content for Unknown Users: Lessons from the MinkApp Case Study. , 2014, , .		2
183	A temporal refuge from predation can change the outcome of prey species competition. Oikos, 2022, 2022, .	1.2	2
184	Using a Modeling Approach to Inform Progress Towards Stoat Eradication From the Orkney Islands. Frontiers in Conservation Science, 2022, 2, .	0.9	1
185	Turning Back the Tide of American Mink Invasion in Partnership with Communities. Proceedings of the Vertebrate Pest Conference, 0, 25, .	0.1	O
186	Testing the specialist predator hypothesis. Mammal Review, 2000, 30, 227-227.	2.2	0
187	First record of Spotted Sandpiper Actitis macularia for Cameroon and Central Africa. Bulletin of the African Bird Club, 2001, 8, 50-50.	0.1	0
188	Conspecific attraction boosts local density while causing lags in range expansion despite high dispersal ability: experiments with a reintroduced endangered mammal., 2018,,.		0