Teuvo Suntio

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9403693/teuvo-suntio-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

144
papers2,328
citations27
h-index43
g-index161
ext. papers2,838
ext. citations5.1
avg, IF5.33
L-index

#	Paper	IF	Citations
144	Methods to Estimate Load-Transient Response of Buck Converter Under Direct-Duty-Ratio and Peak-Current-Mode Control. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 6436-6446	7.2	2
143	Modeling and Analysis of a PCM-Controlled Boost Converter Designed to Operate in DCM. <i>Energies</i> , 2019 , 12, 4	3.1	5
142	Impedance-Based Interactions in Grid-Tied Three-Phase Inverters in Renewable Energy Applications. <i>Energies</i> , 2019 , 12, 464	3.1	16
141	Direct Fixed-Step Maximum Power Point Tracking Algorithms with Adaptive Perturbation Frequency. <i>Energies</i> , 2019 , 12, 399	3.1	5
140	Maximum Perturbation Step Size in MPP-Tracking Control for Ensuring Predicted PV Power Settling Behavior. <i>Energies</i> , 2019 , 12, 3984	3.1	4
139	Load-resistor-affected dynamic models in control design of switched-mode converters. <i>EPE Journal</i> (European Power Electronics and Drives Journal), 2018 , 1-10	0.4	3
138	Online dynamic conductance estimation based maximum power point tracking of photovoltaic generators. <i>Energy Conversion and Management</i> , 2018 , 166, 687-696	10.6	11
137	Design Guidelines for Multiloop Perturbative Maximum Power Point Tracking Algorithms. <i>IEEE Transactions on Power Electronics</i> , 2018 , 33, 1284-1293	7.2	28
136	. IEEE Transactions on Power Electronics, 2018 , 33, 5502-5518	7.2	11
135	Dynamic Modeling and Analysis of PCM-Controlled DCM-Operating Buck Converters A Reexamination. <i>Energies</i> , 2018 , 11, 1267	3.1	8
134	Frequency Response Analysis of Load Effect on Dynamics of Grid-Forming Inverter 2018,		1
133	Revisited Perturbation Frequency Design Guideline for Direct Fixed-Step Maximum Power Point Tracking Algorithms. <i>IEEE Transactions on Industrial Electronics</i> , 2017 , 64, 4601-4609	8.9	31
132	Effect of Active Damping on Output Impedance of Three-Phase Grid-Connected Converter. <i>IEEE Transactions on Industrial Electronics</i> , 2017 , 64, 7532-7541	8.9	32
131	Dynamic Analysis and Control Design Preliminaries 2017 , 27-122		
130	Dynamic Modeling of Direct-on-Time Control 2017 , 123-188		
129	Dynamic Modeling of Current-Mode Control 2017 , 189-264		
128	Dynamic Modeling of Current-Output Converters 2017 , 265-276		

127	Introduction to Current-Fed Converters 2017 , 339-354		
126	Introduction to Photovoltaic Generator 2017 , 423-464		
125	Photovoltaic Generator Interfacing Issues 2017 , 465-490		
124	Dynamic Modeling of Three-Phase Inverters 2017 , 491-532		О
123	Control Design of Grid-Connected Three-Phase Inverters 2017 , 533-586		
122	Reduced-Order Closed-Loop Modeling of Inverters 2017 , 587-632		
121	Multivariable Closed-Loop Modeling of Inverters 2017 , 633-662		1
120	Impedance-Based Stability Assessment 2017 , 663-680		
119	Control Design Issues in Voltage-Fed DCDC Converters 2017, 277-338		
118	Dynamic Modeling of DDR-Controlled CF Converters 2017 , 355-402		
117	Dynamic Modeling of PCM/PVM-Controlled CF Converters 2017 , 403-422		
116	Solar Irradiation Independent Expression for Photovoltaic Generator Maximum Power Line. <i>IEEE Journal of Photovoltaics</i> , 2017 , 7, 1416-1420	3.7	15
115	Modeling of load-transient response of direct-duty-ratio-controlled buck converter 2017,		1
114	Grid-Forming-Mode Operation of Boost-Power-Stage Converter in PV-Generator-Interfacing Applications. <i>Energies</i> , 2017 , 10, 1033	3.1	11
113	Review of PV Generator as an Input Source for Power Electronic Converters. <i>Energies</i> , 2017 , 10, 1076	3.1	17
112	2017,		33
111	Design of grid-voltage feedforward to increase impedance of grid-connected three-phase inverters with LCL-filter 2016 ,		12
110	Grid-connected PV power plant induced power quality problems Experimental evidence 2016,		10

109	Effect of single-current-feedback active damping on the output impedance of grid-connected inverter 2016 ,		3
108	Improving double-line-frequency voltage ripple rejection capability of DC/DC converter in grid connected two-stage PV inverter using DC-link voltage feedforward 2016 ,		2
107	An online measurement method for common-mode impedance in three-phase grid-connected converters 2016 ,		2
106	Sampling frequency design to optimizing MPP-tracking performance for open-loop-operated converters 2016 ,		2
105	Determining maximum MPP-tracking sampling frequency for input-voltage-controlled PV-interfacing converter 2016 ,		2
104	Output impedance of grid-connected converter with active damping and feed-forward schemes 2016 ,		2
103	Single-source multibattery solar charger: case study and implementation issues. <i>Progress in Photovoltaics: Research and Applications</i> , 2015 , 23, 1916-1928	6.8	6
102	Dynamics of Photovoltaic-Generator-Interfacing Voltage-Controlled Buck Power Stage. <i>IEEE Journal of Photovoltaics</i> , 2015 , 5, 633-640	3.7	18
101	Improved adaptive input voltage control of a solar array interfacing current mode controlled boost power stage. <i>Energy Conversion and Management</i> , 2015 , 98, 369-375	10.6	18
100	Interfacing renewable energy sources for maximum power transfer P art II: Dynamics. <i>Renewable and Sustainable Energy Reviews</i> , 2015 , 51, 1771-1783	16.2	16
99	Comprehensive dynamic analysis of photovoltaic generator interfacing DCDC boost power stage. <i>IET Renewable Power Generation</i> , 2015 , 9, 306-314	2.9	34
98	An accurate small-signal model of a three-phase VSI-based photovoltaic inverter with LCL-filter 2015 ,		7
97	Dynamic characteristics of three-phase Z-source-based photovoltaic inverter with asymmetric impedance network 2015 ,		2
96	Generalized multivariable small-signal model of three-phase grid-connected inverter in DQ-domain 2015 ,		23
95	Comments on An Efficient Partial Power Processing DC/DC Converter for Distributed PV Architectures [I] IEEE Transactions on Power Electronics, 2015, 30, 2372-2372	7.2	16
94	Effect of active damping on the output impedance of PV inverter 2015 ,		3
93	Single-Source Multi-Battery Solar Charger: Analysis and Stability Issues. <i>Energies</i> , 2015 , 8, 6427-6450	3.1	5
92	Pseudo-Random Sequences in DQ-Domain Analysis of Feedforward Control in Grid-Connected Inverters. <i>IFAC-PapersOnLine</i> , 2015 , 48, 1301-1306	0.7	9

91	Design of boost-power-stage converter for PV generator interfacing 2014 ,		3
90	Characterizing the Dynamics of the Peak-Current-Mode-Controlled Buck-Power-Stage Converter in Photovoltaic Applications. <i>IEEE Transactions on Power Electronics</i> , 2014 , 29, 3840-3847	7.2	20
89	Effect of conventional grid-voltage feedforward on the output impedance of a three-phase photovoltaic inverter 2014 ,		6
88	Simple method for measuring output impedance of a three-phase inverter in dq-domain 2014,		12
87	. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014 , 2, 949-961	5.6	22
86	Determining the Value of DC-Link Capacitance to Ensure Stable Operation of a Three-Phase Photovoltaic Inverter. <i>IEEE Transactions on Power Electronics</i> , 2014 , 29, 665-673	7.2	66
85	Physical insight into the factors affecting the load-transient response of a buck converter 2014 ,		3
84	Time and frequency-domain evidence on power quality issues caused by grid-connected three-phase photovoltaic inverters 2014 ,		11
83	Grid-Connected Photovoltaic Generation Plants: Components and Operation. <i>IEEE Industrial Electronics Magazine</i> , 2013 , 7, 6-20	6.2	294
82	Modeling the grid synchronization induced negative-resistor-like behavior in the output impedance of a three-phase photovoltaic inverter 2013 ,		48
82			48
	of a three-phase photovoltaic inverter 2013 ,	7.2	
81	of a three-phase photovoltaic inverter 2013, Simplified small-signal stability analysis for optimized power system architecture 2013, Impedance-Based Stability and Transient-Performance Assessment Applying Maximum Peak	7.2 7.2	4
81	of a three-phase photovoltaic inverter 2013, Simplified small-signal stability analysis for optimized power system architecture 2013, Impedance-Based Stability and Transient-Performance Assessment Applying Maximum Peak Criteria. IEEE Transactions on Power Electronics, 2013, 28, 2099-2104 Photovoltaic Generator as an Input Source for Power Electronic Converters. IEEE Transactions on		125
81 80	of a three-phase photovoltaic inverter 2013, Simplified small-signal stability analysis for optimized power system architecture 2013, Impedance-Based Stability and Transient-Performance Assessment Applying Maximum Peak Criteria. IEEE Transactions on Power Electronics, 2013, 28, 2099-2104 Photovoltaic Generator as an Input Source for Power Electronic Converters. IEEE Transactions on Power Electronics, 2013, 28, 3028-3038 Origin of Cross-Coupling Effects in Distributed DCDC Converters in Photovoltaic Applications. IEEE	7.2	4 125 103
81 80 79	of a three-phase photovoltaic inverter 2013, Simplified small-signal stability analysis for optimized power system architecture 2013, Impedance-Based Stability and Transient-Performance Assessment Applying Maximum Peak Criteria. IEEE Transactions on Power Electronics, 2013, 28, 2099-2104 Photovoltaic Generator as an Input Source for Power Electronic Converters. IEEE Transactions on Power Electronics, 2013, 28, 3028-3038 Origin of Cross-Coupling Effects in Distributed DCDC Converters in Photovoltaic Applications. IEEE Transactions on Power Electronics, 2013, 28, 4625-4635	7.2	4 125 103 33
81 80 79 78	of a three-phase photovoltaic inverter 2013, Simplified small-signal stability analysis for optimized power system architecture 2013, Impedance-Based Stability and Transient-Performance Assessment Applying Maximum Peak Criteria. IEEE Transactions on Power Electronics, 2013, 28, 2099-2104 Photovoltaic Generator as an Input Source for Power Electronic Converters. IEEE Transactions on Power Electronics, 2013, 28, 3028-3038 Origin of Cross-Coupling Effects in Distributed DCDC Converters in Photovoltaic Applications. IEEE Transactions on Power Electronics, 2013, 28, 4625-4635 . IEEE Transactions on Power Electronics, 2013, 28, 2647-2648	7.2	4 125 103 33 8

73	Dynamic Properties of Current-Fed Quadratic Full-Bridge Buck Converter for Distributed Photovoltaic MPP-Tracking Systems. <i>IEEE Transactions on Power Electronics</i> , 2012 , 27, 4681-4689	7.2	28
72	Dynamic properties of a voltage source inverter-based three-phase inverter in photovoltaic application. <i>IET Renewable Power Generation</i> , 2012 , 6, 381-391	2.9	18
71	Practical characterization of input-parallel-connected converters with a common input filter 2012,		4
70	Modelling the effect of non-ideal load in three-phase converter dynamics. <i>Electronics Letters</i> , 2012 , 48, 402	1.1	7
69	Dynamic Characteristics of Current-Fed Superbuck Converter. <i>IEEE Transactions on Power Electronics</i> , 2011 , 26, 200-209	7.2	32
68	Current-fed quadratic full-bridge buck converter for PV systems interfacing: Dynamic characterization 2011 ,		1
67	Appearance of a RHP-zero in VSI-based photovoltaic converter control dynamics 2011,		2
66	Stability and transient performance assessment in a COTS-module-based distributed DC/DC system 2011 ,		7
65	Effect of minimizing input capacitance in VSI-based renewable energy source converters 2011,		8
64	Dynamic characteristics of current-fed semi-quadratic buck-boost converter in photovoltaic applications 2011 ,		3
63	Dynamic Properties and Stability Assessment of Current-Fed Converters in Photovoltaic Applications. <i>IEEJ Transactions on Industry Applications</i> , 2011 , 131, 976-984	0.2	23
62	Fast Simulated Frequency Response Measurement for Switched-Mode Power Circuits. <i>EPE Journal</i> (European Power Electronics and Drives Journal), 2010 , 20, 14-20	0.4	
61	Dynamic Properties of PCM-Controlled Superbuck Converter Discrete vs. Coupled Inductor Implementation. <i>EPE Journal (European Power Electronics and Drives Journal)</i> , 2010 , 20, 8-10	0.4	3
60	Dynamic terminal characteristics of a photovoltaic generator 2010 ,		14
59	Implementing current-fed converters by adding an input capacitor at the input of voltage-fed converter for interfacing solar generator 2010 ,		14
58	Issues on Solar-Generator Interfacing With Current-Fed MPP-Tracking Converters. <i>IEEE Transactions on Power Electronics</i> , 2010 , 25, 2409-2419	7.2	80
57	Issues on Solar-Generator Interfacing with Voltage-Fed MPP-Tracking Converters. <i>EPE Journal</i> (European Power Electronics and Drives Journal), 2010 , 20, 40-47	0.4	17
56	Frequency-Response Measurement of Switched-Mode Power Supplies in the Presence of Nonlinear Distortions. <i>IEEE Transactions on Power Electronics</i> , 2010 , 25, 2179-2187	7.2	27

(2008-2009)

55	Circular correlation based identification of switching power converter with uncertainty analysis using fuzzy density approach. <i>Simulation Modelling Practice and Theory</i> , 2009 , 17, 1043-1058	3.9	27
54	Fast frequency response measurement of switched-mode Converters in the presence of nonlinear distortions 2009 ,		2
53	Fast Loop Gain Measurement of a Switched-Mode Converter Using a Binary Signal With a Specified Fourier Amplitude Spectrum. <i>IEEE Transactions on Power Electronics</i> , 2009 , 24, 2746-2755	7.2	27
52	Issues on solar-generator-interfacing with voltage-fed converter 2009 ,		10
51	Average and Small-Signal Modeling of Direct-On-Time Controlled Converters 2009 , 59-119		1
50	Average and Small-Signal Modeling of Peak-Current-Mode Control 2009 , 121-168		
49	Average and Small-Signal Modeling of Average-Current-Mode Control 2009 , 169-188		
48	Basis for Dynamic Analysis and Control Dynamics 2009 , 17-58		
47	Average and Small-Signal Modeling of Self-Oscillation Control 2009 , 189-210		1
46	Dynamic Modeling and Analysis of Current-Output Converters 2009 , 211-224		
45	The Fourth-Order Converter Buperbuck 2009 , 307-349		O
44	Control Design Issues 2009 , 261-305		
43	Interconnected Systems 2009 , 225-260		
42	On EMI-filter interactions in a regulated converter - stability and load-transient performance 2009,		4
41	The Short-Circuit Input Impedance as a Main Source of Input-Filter Interactions in a Regulated Converter. <i>EPE Journal (European Power Electronics and Drives Journal)</i> , 2009 , 19, 31-40	0.4	2
40	Minor-Loop Gain as a Source of Information on Robust Stability and Transient Performance in an Interconnected System. <i>EPE Journal (European Power Electronics and Drives Journal)</i> , 2009 , 19, 28-35	0.4	1
39	2009,		74
38	Dynamical Modeling and Characterization of Peak-Current-Controlled Superbuck Converter. <i>IEEE Transactions on Power Electronics</i> , 2008 , 23, 1370-1380	7.2	32

37	Modelling and dynamic characterisation of peak-current-mode-controlled superboost converter. <i>IET Power Electronics</i> , 2008 , 1, 527	2.2	16
36	Methods to characterize open-loop dynamics of current-mode-controlled converters. <i>Power Electronics Specialist Conference (PESC), IEEE</i> , 2008 ,		4
35	PCM-controlled superbuck converter with super performance and surprises 2008,		2
34	Multi-channel semi-regulated bus converter. <i>Power Electronics Specialist Conference (PESC), IEEE</i> , 2008 ,		4
33	Dynamical Characterization of Peak-Current-Mode-Controlled Buck Converter With Output-Current Feedforward. <i>IEEE Transactions on Power Electronics</i> , 2007 , 22, 444-451	7.2	52
32	Source-Imposed Instability and Performance Degradation in a Regulated Converter 2007,		7
31	Dynamical profile of a switched-mode converter - reality or imagination 2007,		6
30	Impact of remote sensing on converter stability and performance 2007,		2
29	Dynamical modelling of peak-current-mode-controlled converter in continuous conduction mode. <i>Simulation Modelling Practice and Theory</i> , 2007 , 15, 1320-1337	3.9	20
28	QFT based robust controller design for a DC-DC switching power converter 2007 ,		6
27	. IEEE Transactions on Industrial Electronics, 2007, 54, 1005-1013	8.9	36
26	Load-imposed instability and performance degradation in a regulated converter. <i>IET Electric Power Applications</i> , 2006 , 153, 781		28
25	EMI-Filter Interactions in a Buck Converter 2006 ,		1
24	Dynamical Characterization of Voltage-Mode Controlled Buck Converter Operating in CCM and DCM 2006 ,		2
23	Unified average and small-signal modeling of direct-on-time control. <i>IEEE Transactions on Industrial Electronics</i> , 2006 , 53, 287-295	8.9	51
22	Source-Reflected Load Interactions in a Regulated Converter. <i>Industrial Electronics Society (IECON),</i> Annual Conference of IEEE, 2006 ,		20
21	Stability and Performance Analysis of Regulated Converter Systems. <i>Industrial Electronics Society</i> (IECON), Annual Conference of IEEE, 2006 ,		4
20	Dynamic Properties of Interconnected Power Systems - A System Theoretic Approach 2006 ,		21

19	Average and small-signal modeling of self-oscillating flyback converter with applied switching delay. <i>IEEE Transactions on Power Electronics</i> , 2006 , 21, 479-486	7.2	28	
18	Small-Signal Models for Constant-Current Regulated Converters. <i>Industrial Electronics Society</i> (IECON), Annual Conference of IEEE, 2006,		13	
17	Analysis of the Load Interactions in Constant-Current-Controlled Buck Converter 2006,		3	
16	Battery impedance characterization through inspection of discharge curve and testing with short pulses. <i>Journal of Power Sources</i> , 2006 , 158, 1029-1033	8.9	3	
15	Characterization of Regulated Converters to Ensure Stability and Performance in Distributed Power Supply Systems 2005 ,		21	
14	Load-Impedance Based Interactions in Regulated Converters 2005,		12	
13	USING INPUT INVARIANCE AS A METHOD TO FACILITATE SYSTEM DESIGN IN DPS APPLICATIONS. <i>Journal of Circuits, Systems and Computers</i> , 2004 , 13, 707-723	0.9	13	
12	A Method for Battery Impedance Analysis. <i>Journal of the Electrochemical Society</i> , 2004 , 151, A806	3.9	7	
11	Evaluation of VRLA battery under overcharging: model for battery testing. <i>Journal of Power Sources</i> , 2002 , 111, 65-82	8.9	21	
10	Input filter interactions in peak-current-mode-controlled buck converter operating in CICM. <i>IEEE Transactions on Industrial Electronics</i> , 2002 , 49, 76-86	8.9	31	
9	Chargedischarge behaviour of VRLA batteries: model calibration and application for state estimation and failure detection. <i>Journal of Power Sources</i> , 2001 , 103, 42-53	8.9	31	
8	Analysis and modeling of peak-current-mode-controlled buck converter in DICM. <i>IEEE Transactions on Industrial Electronics</i> , 2001 , 48, 127-135	8.9	34	
7	Dynamics of a buck converter with a constant power load		77	
6	Input filter interactions in multi-module parallel switching-mode power supplies		2	
5	Load and supply interactions in VMC-buck converter operating in CCM and DCM		5	
4	Load and supply invariance in a regulated converter		6	
3	Design of EMI filter for stability and performance in switched-mode converters		7	
2	Unified derivation and analysis of duty-ratio constraints for peak-current-mode control in continuous and discontinuous modes		8	

Practical design issues of multi-loop controller for a telecom rectifier

2